搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

神经元网络中局部同步引发的各种效应

白婧 关富荣 唐国宁

引用本文:
Citation:

神经元网络中局部同步引发的各种效应

白婧, 关富荣, 唐国宁

Various effects induced by local synchronization in neural networks

Bai Jing, Guan Fu-Rong, Tang Guo-Ning
PDF
HTML
导出引用
  • 在大脑皮层中, 神经元大范围的同步放电可以引发癫痫, 而癫痫发作期间可以自发出现螺旋波, 大量神经元的同步放电与螺旋波自发产生之间的关系目前仍不清楚. 本文通过增加水平长程连接构造了具有局域长程耦合区的二维神经元网络, 采用Morris-Lecar神经元模型研究了具有多个长方形长程耦合区的神经元网络中波的传播, 数值模拟结果表明: 传播方向与长程耦合朝向平行的平面波和靶波经过长程耦合区会导致长程耦合区内的神经元同步激发, 这种同步激发伴随一部分神经元延迟激发, 而另一部分提前激发; 当长程耦合区宽度超过临界宽度时, 长程耦合区所有神经元延迟激发; 当长程耦合区宽度超过最大导通宽度时, 波将不能通过长程耦合区. 当适当选择长方形长程耦合区的尺寸时, 神经元同步激发可使网络出现波回传效应和具有波传播方向的选择性, 而且这种波传播方向的选择性对神经元是否处于定态和耦合强度变化很敏感, 以致高频平面波列可以部分通过宽度超过最大导通宽度的长程耦合区, 因此可以通过对长程耦合区内的神经元施加微扰来控制低频波是否可以通过一定宽度的长程耦合区. 对于适当选取的神经元网络结构, 当平面波或靶波经过长程耦合区时, 网络可自发出现自维持平面波、螺旋波和靶波等现象. 本文对产生这些现象的物理机制作了分析.
    In the cerebral cortex, the large-scale synchronous firing of neurons can cause epilepsy, during which spiral waves can spontaneously occur. The relationship between the synchronous firing of a large number of neurons and the spontaneous generation of spiral waves is still unclear. In this paper, a two-dimensional neuronal network with the long-range coupling regions generated by adding long-range horizontal connections is constructed. The Morris-Lecar neuron model is used to study the propagation of waves in the two-dimensional neuronal network with the rectangular long-range coupling regions. Numerical simulation results show that the plan and target waves whose propagation directions are both parallel to that of the long-range coupling can lead the neurons to be excited synchronously in the long-range coupling region. This synchronous firing is accompanied by delayed firing of some neurons and premature firing of others. When the width of the long-range coupling region exceeds the critical width, all the neurons in the long-range coupling region delay firing. When the width of the long-range coupling region exceeds a maximum conduction width, the waves will not pass through the long-range coupling region. When the size of the rectangular region of the long-range coupling is selected appropriately, the synchronous excitation of neurons can cause network to present the backfiring effect and to have the selectivity of wave propagation direction. Furthermore, the selectivity of wave propagation direction is very sensitive to whether the neuron is in the stationary state and also to the change of coupling strength, so that the high frequency plane wave train can partially pass through the long-range coupling region whose width exceeds the maximum conduction width. So we can control whether the wave can pass through the long-range coupling region of a certain width by giving the neurons in the long-range coupling region a tiny perturbation. When one or two long-range coupling regions are constructed in the neural network and the size of the long-range coupling regions is selected appropriately, the self-sustaining plane wave, spiral wave and target wave can appear spontaneously in the network when the wave passes through the long-range coupling regions. The physical mechanisms behind those phenomena are also analyzed.
      通信作者: 唐国宁, tangguoning@sohu.com
    • 基金项目: 国家自然科学基金 (批准号: 11565005, 12047567)资助的课题
      Corresponding author: Tang Guo-Ning, tangguoning@sohu.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11565005, 12047567)
    [1]

    Ouyang Q, Flesselles J M 1996 Nature 379 143Google Scholar

    [2]

    Ecke R E, Hu Y C, Mainieri R, Ahlers G 1995 Science 269 1704Google Scholar

    [3]

    Davidenko J M, Pertsov A V, Salomonsz R, Baxter W, Jalife J 1992 Nature 355 349Google Scholar

    [4]

    Chen X W, Li P F, Yuan X P, Zhao Y H, Ma J, Chen J X 2019 Commun. Theor. Phys. 71 334Google Scholar

    [5]

    Zimik S, Pandit R 2017 Sci. Rep. 7 15350Google Scholar

    [6]

    Huang X Y, Xu W F, Liang J M, Takagaki K, Gao X, Wu J Y 2010 Neuron 68 978Google Scholar

    [7]

    Huang X Y, Troy W C, Yang Q, Ma H T, Laing C R, Schiff S J, Wu J Y 2004 J. Neurosci. 24 9897Google Scholar

    [8]

    Sato T K, Nauhaus I, Carandini M 2012 Neuron 75 218Google Scholar

    [9]

    Stacey W 2012 Epilepsy Curr. 12 147Google Scholar

    [10]

    Isomura Y, Fujiwara-Tsukamoto Y, Takada M 2008 Neurosci. Res. 61 227Google Scholar

    [11]

    Yu Y F, Santos L M, Mattiace L A, et al. 2012 Proc. Natl. Acad. Sci. USA 109 2585Google Scholar

    [12]

    Jung P, Cornell-Bell A, Madden K S, Moss F 1998 J. Neurophysiol. 79 1098Google Scholar

    [13]

    Qin H X, Ma J, Wang C N, Chu R T 2014 Sci. China Phys. Mech. 57 1918Google Scholar

    [14]

    汪芃, 李倩昀, 黄志精, 唐国宁 2018 物理学报 67 170501Google Scholar

    Wang P, Li Q Y, Huang Z J, Tang G N 2018 Acta Phys. Sin. 67 170501Google Scholar

    [15]

    黄志精, 李倩昀, 白婧, 唐国宁 2019 物理学报 68 110503Google Scholar

    Huang Z J, Li Q Y, Bai J, Tang G N 2019 Acta Phys. Sin. 68 110503Google Scholar

    [16]

    Gunji A, Ishii R, Chau W, Kakigi R, Pantev C 2007 NeuroImage 34 426Google Scholar

    [17]

    Baptista M S, Szmoski R M, Pereira R F, Pinto S E D S 2016 Sci. Rep. 6 22617Google Scholar

    [18]

    Antonopoulos C G, Srivastava S, Pinto S E D S, Baptista M S 2015 Plos Comput. Biol. 11 e1004372Google Scholar

    [19]

    Wang Q Y, Lu Q S 2005 Chin. Phys. Lett. 22 543Google Scholar

    [20]

    Yanchuk S, Perlikowski P, Popovych O V, Tass P A 2011 Chaos 21 047511Google Scholar

    [21]

    Belykh I, Lange E D, Hasler M 2005 Phys. Rev. Lett. 94 188101Google Scholar

    [22]

    孙晓娟, 杨白桦, 吴晔, 肖井华 2014 物理学报 63 180507Google Scholar

    Sun X J, Yang B H, Wu Y, Xiao J H 2014 Acta Phys. Sin. 63 180507Google Scholar

    [23]

    Shi X, Wang Q Y, Lu Q S 2008 Cogn. Neurodyn. 2 195Google Scholar

    [24]

    Manjarrez E, Rojas-Piloni J G, Mendez I, Martinez L, Velez D, Vazquez D, Flores A 2002 Neurosci. Lett. 326 93Google Scholar

    [25]

    Glatt E, Busch H, Kaiser F, Zaikin A 2006 Phys. Rev. E 73 026216Google Scholar

    [26]

    孙晓娟, 李国芳 2016 物理学报 65 120502Google Scholar

    Sun X J, Li G F 2016 Acta Phys. Sin. 65 120502Google Scholar

    [27]

    Gan C B, Matjaz P, Wang Q Y 2010 Chin. Phys. B 19 040508Google Scholar

    [28]

    Yu H T, Guo X M, Wang J 2017 Commun. Nonlinear Sci. Numer. Simulat. 42 532Google Scholar

    [29]

    Wang Q Y, Zhang H H, Chen G R 2012 Chaos 22 043123Google Scholar

    [30]

    Wu Y, Liu D, Song Z 2015 Neuroscience 287 175Google Scholar

    [31]

    Morris C, Lecar H 1981 Biophys. J. 35 193Google Scholar

    [32]

    Tang Z, Li Y Y, Xi L, Jia B, Gu H G 2012 Commun. Theor. Phys. 57 61Google Scholar

  • 图 1  神经元之间的长程耦合示意图, 虚线代表近邻耦合, 实线代表长程耦合, 空心圆代表长程耦合区外的神经元, 实心圆代表长程耦合区内的神经元

    Fig. 1.  Schematic diagram of long-range coupling between neurons. Dashed and solid lines represent the nearest neighbor and long-range coupling, respectively. Hollow and solid circles represent the neurons outside and inside the long-range coupling region, respectively.

    图 2  不同耦合强度和不同宽度下神经元激发时刻随位置$ l $的变化, 斜线对应无长程耦合情况, 不同水平线上的黑点个数对应不同宽度的长程耦合区 (a) $ \varepsilon {\text{ = }}0.2 $; (b) $ \varepsilon {\text{ = }}0.4 $

    Fig. 2.  The firing time point of neurons varies with location $ l $ for different coupling strengths and different widths of the long-range coupling region. The oblique line corresponds to the network without long-range coupling, and the number of black dots on different horizontal lines is the width of the corresponding coupling region: (a) $ \varepsilon {\text{ = }}0.2 $; (b) $ \varepsilon {\text{ = }}0.4 $.

    图 3  $ \varepsilon {\text{ = }}0.2 $的情况下不同时刻的膜电位斑图, 白色虚线矩形框内为长程耦合区, 其宽度$ d = 50 $. 上下两排图的波传播方向分别与长程耦合方向平行和垂直 (a), (d) $ t = 74{\text{ ms}} $; (b), (e) $ t = 228{\text{ ms}} $; (c), (f) $ t = 556{\text{ ms}} $

    Fig. 3.  Membrane-potential patterns at different time points for $ \varepsilon {\text{ = }}0.2 $. The box marked by a white dotted rectangle shows the long-range coupling region, and its width is equal to 50. The wave propagation directions in the upper and lower row panels are parallel and perpendicular to the long-range coupling direction, respectively: (a), (d) $ t = 74{\text{ ms}} $; (b), (e) $ t = 228{\text{ ms}} $; (c), (f) $t = $$ 556{\text{ ms}}$.

    图 4  $ \varepsilon {\text{ = }}0.2 $和不同的长程耦合区宽度的情况下一行格点的膜电位的时空斑图, 两白色虚线之间的区域为长程耦合区 (a) $d = $$ 6$; (b) $ d = 14 $; (c) $ d = 21 $; (d) $ d = 27 $

    Fig. 4.  Spatiotemporal patterns of membrane potential of a row of grid points for $ \varepsilon {\text{ = }}0.2 $ and different widths of long-range coupling region. The region between the two white dotted lines is the long-range coupling region: (a) $ d = 6 $; (b) $ d = 14 $; (c) $ d = 21 $; (d) $ d = 27 $.

    图 5  $ d{\text{ = }}27 $, $ \varepsilon {\text{ = }}0.2 $和不同周期T平面波下神经元的激发时刻随位置$ l $的变化. 空心圆对应无长程耦合结果, 实心方块对应有长程耦合的结果 (a) $ T{\text{ = }}300{\text{ ms}} $; (b) $ T{\text{ = }}450{\text{ ms}} $; (c) $ T{\text{ = }}480{\text{ ms}} $

    Fig. 5.  The firing time point of neurons varies with location $ l $ for $ d{\text{ = }}27 $, $ \varepsilon {\text{ = }}0.2 $ and different periods of planar wave. The hollow circles show the results obtained without long-range coupling, while the solid squares show the results obtained with long-range coupling: (a) $ T{\text{ = }}300{\text{ ms}} $; (b) $ T{\text{ = }}450{\text{ ms}} $; (c) $ T{\text{ = }}480{\text{ ms}} $.

    图 6  $ L{\text{ = }}N $, $ d = 14 $Δ = 13的情况下不同时刻的膜电位斑图, 左边(右边)两条白色虚线之间为长程耦合区 (a) $ t = $$ 150{\text{ ms}} $; (b) $ t = 292{\text{ ms}} $; (c) $ t = 342{\text{ ms}} $; (d) $ t = 370{\text{ ms}} $; (e) $ t = 428{\text{ ms}} $; (f) $ t = 478{\text{ ms}} $; (g) $ t = 528{\text{ ms}} $; (h) $ t = 570{\text{ ms}} $.

    Fig. 6.  Patterns of the membrane potential at different time points for $ L{\text{ = }}N $, $ d = 14 $ and Δ = 13. The region between two white dotted lines on the left (right) is the long-range coupling region: (a) $ t = 150{\text{ ms}} $; (b) $ t = 292{\text{ ms}} $; (c) $ t = 342{\text{ ms}} $; (d) $ t = 370{\text{ ms}} $; (e) $ t = 428{\text{ ms}} $; (f) $ t = 478{\text{ ms}} $; (g) $ t = 528{\text{ ms}} $; (h) $ t = 570{\text{ ms}} $.

    图 7  $ L = 35 $, $ d = 14 $, Δ = 1的情况下不同时刻的膜电位斑图, 两个白色虚线框内为长程耦合区 (a) $ t = 150{\text{ ms}} $; (b) $ t = 306{\text{ ms}} $; (c) $ t = 318{\text{ ms}} $; (d) $ t = 346{\text{ ms}} $; (e) $ t = 442{\text{ ms}} $; (f) $ t = 490{\text{ ms}} $; (g) $ t = 514{\text{ ms}} $; (h) $ t = 816{\text{ ms}} $

    Fig. 7.  Patterns of the membrane potential at different time points for $ L{\text{ = }}35 $, $ d = 14 $ and Δ = 1. The two boxes marked by white dotted rectangle show the long-range coupling regions: (a) $ t = 150{\text{ ms}} $; (b) $ t = 306{\text{ ms}} $; (c) $ t = 318{\text{ ms}} $; (d) $ t = 346{\text{ ms}} $; (e) $ t = 442{\text{ ms}} $; (f) $ t = 490{\text{ ms}} $; (g) $ t = 514{\text{ ms}} $; (h) $t = 816{\text{ ms}}$

    图 8  $ d = 14 $, Δ = 13和不同L下不同时刻的膜电位斑图, 两个白色虚线框内为长程耦合区. 三个长程耦合区的长度分别为$ L = 61, {\text{ }}101, {\text{ }}161 $ (a) $ t = 1308\;{\text{ ms}} $; (b) $ t = 2890\;{\text{ ms}} $; (c) $ t = 3718\;{\text{ ms}} $; (d) $ t = 1370\;{\text{ ms}} $; (e) $ t = 2690\;{\text{ ms}} $; (f) $ t = 3710\;{\text{ ms}} $; (g) $ t = 1296\;{\text{ ms}} $; (h) $ t = 2400\;{\text{ ms}} $; (i) $ t = 3750\;{\text{ ms}} $

    Fig. 8.  Patterns of the membrane potential at different time points for $ d = 14 $, Δ = 13 and different L. The two boxes marked by white dotted rectangle show the long-range coupling regions. The lengths of the three long-range coupling regions are equal to 60, 101, 161, respectively: (a) $ t = 1308\;{\text{ ms}} $; (b) $ t = 2890\;{\text{ ms}} $; (c) $ t = 3718\;{\text{ ms}} $; (d) $ t = 1370\;{\text{ ms}} $; (e) $ t = 2690\;{\text{ ms}} $; (f) $ t = 3710\;{\text{ ms}} $;(g) $ t = 1296\;{\text{ ms}} $; (h) $ t = 2400\;{\text{ ms}} $; (i) $ t = 3750\;{\text{ ms}} $.

    图 9  $ \varepsilon {\text{ = }}0.2 $, $ L = 41 $$ d = 21 $的情况下不同时刻的膜电位斑图. 白色虚线框内为长程耦合区 (a) $ t = 292\;{\text{ ms}} $; (b) $t = $$ 320\;{\text{ ms}}$; (c) $ t = 348\;{\text{ ms}} $; (d) $ t = 640\;{\text{ ms}} $; (e) $ t = 758\;{\text{ ms}} $; (f) $ t = 854\;{\text{ ms}} $; (g) $ t = 890\;{\text{ ms}} $; (h) $ t = 932\;{\text{ ms}} $

    Fig. 9.  Patterns of the membrane potential at different time points for $ \varepsilon {\text{ = }}0.2 $, $ L = 41 $ and $ d = 21 $. The box marked by white dotted rectangle shows the long-range coupling region: (a) $ t = 292{\text{ ms}} $; (b) $ t = 320\;{\text{ ms}} $; (c) $ t = 348\;{\text{ ms}} $; (d) $ t = 640\;{\text{ ms}} $; (e) $t = $$ 758\;{\text{ ms}}$; (f) $ t = 854\;{\text{ ms}} $; (g) $ t = 890\;{\text{ ms}} $; (h) $ t = 932\;{\text{ ms}} $.

    图 10  某时刻膜电位斑图, 白色虚线框内为长程耦合区. 第一排图(第二排图)使用靶波源${{\rm{S}}_1}$(${{\rm{S}}_2}$), 箭头所指为靶波源位置 (a) $t = $$ 760\;{\text{ ms}}$; (b) $ t = 858\;{\text{ ms}} $; (c) $ t = 1082\;{\text{ ms}} $; (d) $ t = 1992\;{\text{ ms}} $; (e) $ t = 1862\;{\text{ ms}} $; (f) $ t = 1390\;{\text{ ms}} $

    Fig. 10.  Membrane potential patterns at a certain time point. The box marked by white dotted rectangle shows the long-range coupling region. The first row (second row) panel use the target wave source ${{\rm{S}}_1}$(${{\rm{S}}_2}$). The arrow indicates the location of the target wave source: (a) $ t = 760\;{\text{ ms}} $; (b) $ t = 858\;{\text{ ms}} $; (c) $ t = 1082\;{\text{ ms}} $; (d) $ t = 1992\;{\text{ ms}} $; (e) $ t = 1862\;{\text{ ms}} $; (f) $ t = 1390\;{\text{ ms}} $.

  • [1]

    Ouyang Q, Flesselles J M 1996 Nature 379 143Google Scholar

    [2]

    Ecke R E, Hu Y C, Mainieri R, Ahlers G 1995 Science 269 1704Google Scholar

    [3]

    Davidenko J M, Pertsov A V, Salomonsz R, Baxter W, Jalife J 1992 Nature 355 349Google Scholar

    [4]

    Chen X W, Li P F, Yuan X P, Zhao Y H, Ma J, Chen J X 2019 Commun. Theor. Phys. 71 334Google Scholar

    [5]

    Zimik S, Pandit R 2017 Sci. Rep. 7 15350Google Scholar

    [6]

    Huang X Y, Xu W F, Liang J M, Takagaki K, Gao X, Wu J Y 2010 Neuron 68 978Google Scholar

    [7]

    Huang X Y, Troy W C, Yang Q, Ma H T, Laing C R, Schiff S J, Wu J Y 2004 J. Neurosci. 24 9897Google Scholar

    [8]

    Sato T K, Nauhaus I, Carandini M 2012 Neuron 75 218Google Scholar

    [9]

    Stacey W 2012 Epilepsy Curr. 12 147Google Scholar

    [10]

    Isomura Y, Fujiwara-Tsukamoto Y, Takada M 2008 Neurosci. Res. 61 227Google Scholar

    [11]

    Yu Y F, Santos L M, Mattiace L A, et al. 2012 Proc. Natl. Acad. Sci. USA 109 2585Google Scholar

    [12]

    Jung P, Cornell-Bell A, Madden K S, Moss F 1998 J. Neurophysiol. 79 1098Google Scholar

    [13]

    Qin H X, Ma J, Wang C N, Chu R T 2014 Sci. China Phys. Mech. 57 1918Google Scholar

    [14]

    汪芃, 李倩昀, 黄志精, 唐国宁 2018 物理学报 67 170501Google Scholar

    Wang P, Li Q Y, Huang Z J, Tang G N 2018 Acta Phys. Sin. 67 170501Google Scholar

    [15]

    黄志精, 李倩昀, 白婧, 唐国宁 2019 物理学报 68 110503Google Scholar

    Huang Z J, Li Q Y, Bai J, Tang G N 2019 Acta Phys. Sin. 68 110503Google Scholar

    [16]

    Gunji A, Ishii R, Chau W, Kakigi R, Pantev C 2007 NeuroImage 34 426Google Scholar

    [17]

    Baptista M S, Szmoski R M, Pereira R F, Pinto S E D S 2016 Sci. Rep. 6 22617Google Scholar

    [18]

    Antonopoulos C G, Srivastava S, Pinto S E D S, Baptista M S 2015 Plos Comput. Biol. 11 e1004372Google Scholar

    [19]

    Wang Q Y, Lu Q S 2005 Chin. Phys. Lett. 22 543Google Scholar

    [20]

    Yanchuk S, Perlikowski P, Popovych O V, Tass P A 2011 Chaos 21 047511Google Scholar

    [21]

    Belykh I, Lange E D, Hasler M 2005 Phys. Rev. Lett. 94 188101Google Scholar

    [22]

    孙晓娟, 杨白桦, 吴晔, 肖井华 2014 物理学报 63 180507Google Scholar

    Sun X J, Yang B H, Wu Y, Xiao J H 2014 Acta Phys. Sin. 63 180507Google Scholar

    [23]

    Shi X, Wang Q Y, Lu Q S 2008 Cogn. Neurodyn. 2 195Google Scholar

    [24]

    Manjarrez E, Rojas-Piloni J G, Mendez I, Martinez L, Velez D, Vazquez D, Flores A 2002 Neurosci. Lett. 326 93Google Scholar

    [25]

    Glatt E, Busch H, Kaiser F, Zaikin A 2006 Phys. Rev. E 73 026216Google Scholar

    [26]

    孙晓娟, 李国芳 2016 物理学报 65 120502Google Scholar

    Sun X J, Li G F 2016 Acta Phys. Sin. 65 120502Google Scholar

    [27]

    Gan C B, Matjaz P, Wang Q Y 2010 Chin. Phys. B 19 040508Google Scholar

    [28]

    Yu H T, Guo X M, Wang J 2017 Commun. Nonlinear Sci. Numer. Simulat. 42 532Google Scholar

    [29]

    Wang Q Y, Zhang H H, Chen G R 2012 Chaos 22 043123Google Scholar

    [30]

    Wu Y, Liu D, Song Z 2015 Neuroscience 287 175Google Scholar

    [31]

    Morris C, Lecar H 1981 Biophys. J. 35 193Google Scholar

    [32]

    Tang Z, Li Y Y, Xi L, Jia B, Gu H G 2012 Commun. Theor. Phys. 57 61Google Scholar

  • [1] 王学彬, 徐灿, 郑志刚. 多重耦合振子系统的同步动力学. 物理学报, 2020, 69(17): 170501. doi: 10.7498/aps.69.20200394
    [2] 郑志刚, 翟云, 王学彬, 陈宏斌, 徐灿. 耦合相振子系统同步的序参量理论. 物理学报, 2020, 69(8): 080502. doi: 10.7498/aps.69.20191968
    [3] 李伟恒, 潘飞, 黎维新, 唐国宁. 非对称耦合两层可激发介质中的螺旋波动力学. 物理学报, 2015, 64(19): 198201. doi: 10.7498/aps.64.198201
    [4] 徐莹, 王春妮, 靳伍银, 马军. 梯度耦合下神经元网络中靶波和螺旋波的诱发研究. 物理学报, 2015, 64(19): 198701. doi: 10.7498/aps.64.198701
    [5] 李伟恒, 黎维新, 潘飞, 唐国宁. 两层耦合可激发介质中螺旋波转变为平面波. 物理学报, 2014, 63(20): 208201. doi: 10.7498/aps.63.208201
    [6] 乔成功, 王利利, 李伟恒, 唐国宁. 钾扩散耦合引起的心脏中螺旋波的变化. 物理学报, 2013, 62(19): 198201. doi: 10.7498/aps.62.198201
    [7] 周振玮, 王利利, 乔成功, 陈醒基, 田涛涛, 唐国宁. 用同步复极化终止心脏中的螺旋波和时空混沌. 物理学报, 2013, 62(15): 150508. doi: 10.7498/aps.62.150508
    [8] 陈醒基, 乔成功, 王利利, 周振玮, 田涛涛, 唐国宁. 间接延迟耦合可激发介质中螺旋波的演化. 物理学报, 2013, 62(12): 128201. doi: 10.7498/aps.62.128201
    [9] 高继华, 谢伟苗, 高加振, 杨海朋, 戈早川. 耦合复金兹堡-朗道(Ginzburg-Landau)方程中的模螺旋波. 物理学报, 2012, 61(13): 130506. doi: 10.7498/aps.61.130506
    [10] 周振玮, 陈醒基, 田涛涛, 唐国宁. 耦合可激发介质中螺旋波的控制研究. 物理学报, 2012, 61(21): 210506. doi: 10.7498/aps.61.210506
    [11] 黎广钊, 陈永淇, 唐国宁. 三层弱循环耦合可激发介质中螺旋波动力学. 物理学报, 2012, 61(2): 020502. doi: 10.7498/aps.61.020502
    [12] 陈醒基, 田涛涛, 周振玮, 胡一博, 唐国宁. 通过被动介质耦合的两螺旋波的同步. 物理学报, 2012, 61(21): 210509. doi: 10.7498/aps.61.210509
    [13] 吕翎, 李钢, 张檬, 李雨珊, 韦琳玲, 于淼. 全局耦合网络的参量辨识与时空混沌同步. 物理学报, 2011, 60(9): 090505. doi: 10.7498/aps.60.090505
    [14] 卞秋香, 姚洪兴. 非线性耦合多重边赋权复杂网络的同步. 物理学报, 2010, 59(5): 3027-3034. doi: 10.7498/aps.59.3027
    [15] 吕翎, 李钢, 商锦玉, 沈娜, 张新, 柳爽, 朱佳博. 最近邻耦合网络的时空混沌同步研究. 物理学报, 2010, 59(9): 5966-5971. doi: 10.7498/aps.59.5966
    [16] 敬晓丹, 吕翎. 非线性耦合完全网络的时空混沌同步. 物理学报, 2009, 58(11): 7539-7543. doi: 10.7498/aps.58.7539
    [17] 钱 郁, 宋宣玉, 时 伟, 陈光旨, 薛 郁. 可激发介质湍流的耦合同步及控制. 物理学报, 2006, 55(9): 4420-4427. doi: 10.7498/aps.55.4420
    [18] 于洪洁, 刘延柱. 对称非线性耦合混沌系统的同步. 物理学报, 2005, 54(7): 3029-3033. doi: 10.7498/aps.54.3029
    [19] 袁国勇, 杨世平, 王光瑞, 陈式刚. 两个延迟耦合FitzHugh-Nagumo系统的动力学行为. 物理学报, 2005, 54(4): 1510-1512. doi: 10.7498/aps.54.1510
    [20] 张旭, 沈柯. 时空混沌的单向耦合同步. 物理学报, 2002, 51(12): 2702-2706. doi: 10.7498/aps.51.2702
计量
  • 文章访问数:  5022
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-21
  • 修回日期:  2021-04-12
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-05

/

返回文章
返回