-
为了研究疏水表面垂直振动液滴的运动规律, 本文建立了振动液滴的三维模型, 考虑了振动液滴的动态接触角变化过程, 通过流体体积函数和连续表面张力(volume of fluid-continue surface force, VOF-CSF)方法实现了液滴受迫振动的数值模拟, 得到了液滴的四种模态(2, 4, 6和8)动态演化过程、内部流场结构以及动态接触角的变化规律. 随着振动加速度的改变, 液滴可表现出丰富的模态, 而具体模态依赖于振动加速度的频率变化. 以此为基础, 本文对液滴的内部流场结构做了进一步的分析. 在模态2和模态4时, 液滴内部流动从底部向上产生“Y”型流动, 而在模态6和模态8时呈现对称的涡流动. 且共振模态阶数越高, 液滴内部速度平均值越大. 液滴振动时的动态接触角明显偏离静态接触角, 表明液滴振动模型有必要考虑动态接触角. 模拟结果与文献中的实验结果做了对比, 结果符合良好.In order to understand the evolution and flow structure within vertical vibrating droplets on hydrophobic surfaces, a three-dimensional model of the vibrating droplet is developed, and the dynamic contact angle of the vibrating droplet is considered. The numerical simulations are performed for the droplet attached to the vertical vibrating plane by the VOF-CSF method, and the four resonance modes of the droplets are obtained. The evolution of modes (2, 4, 6, and 8), internal flow structures and the variation of the dynamic contact angle are predicted. With the change of the vibration acceleration, the droplet can express a wealth of modes, and the specific mode depends on the frequency of the vibrating acceleration. Based on this model, in this paper the internal flow field structure of the droplet is further analyzed. In mode 2 and mode 4, a Y-shaped flow is generated from the bottom of the droplet, while in mode 6 and mode 8, there is a symmetrical eddy flow. And the higher the order of the resonance mode, the larger the average value of the internal velocity of the droplet is. The dynamic contact angle of the vibrating droplet obviously deviates from the static contact angle, indicating the necessity to consider the dynamic contact angle in simulating the vertical vibrating of droplet. The simulation results are compared with the experimental results from the literature, showing that they are in good agreement with each other.
-
Keywords:
- vibration droplet /
- modes /
- micro-flow /
- numerical simulation
[1] Singhal V, Garimella S V, Raman A 2004 Appl. Mech. Rev. 57 191Google Scholar
[2] Vukasinovic B, Smith M K, Glezer A 2004 Phys. Fluid 16 306Google Scholar
[3] Nisisako T, Torri T 2007 Adv. Mater. 19 1489Google Scholar
[4] Shan Y G, Wang Y L, Coyle T 2013 Appl. Therm. Eng. 51 690Google Scholar
[5] 高超, 袁俊杰, 曹进军, 杨荟楠, 单彦广 2019 物理学报 68 140204Google Scholar
Gao C, Yuan J J, Cao J J, Yang H N, Shan Y G 2019 Acta Phys. Sin. 68 140204Google Scholar
[6] 张永建 2015 博士学位论文 (西安: 西北工业大学)
Zhang Y J 2015 Ph. D. Dissertation (Xian: Northwestern Polytechnical University) (in Chinese)
[7] Kabi P, Chattopadhyay B, Bhattacharyya S, Chaudhuri S, Basu S 2018 Langmuir 34 12642Google Scholar
[8] Kelvin L 1882 Mathematical and Physical Papers (London: Cambridge University Press) pp178−181
[9] Rayleigh L 1879 Proc. R. Soc. London 29 71Google Scholar
[10] Lamb H 1932 Hydrodynamics (London: Cambridge University press) p606
[11] Strani M, Sabetta F 1984 J. Fluid Mech. 141 233Google Scholar
[12] Ko S H, Lee S J, Kang K H 2009 Appl. Phys. Lett. 94 194102Google Scholar
[13] 邵学鹏, 解文军 2012 物理学报 61 134302Google Scholar
Shao X P, Xie W J 2012 Acta Phys. Sin. 61 134302Google Scholar
[14] Brunet P, Eggers J, Deegan R D 2009 Eur. Phys. J-Spec. Top. 166 11Google Scholar
[15] Noblin X, Buguin A, Brochard-Wyart F 2009 Eur. Phys. J. E 166 7Google Scholar
[16] Dong L, Chaudhury A, Chaudhury M K 2006 Eur. Phys. J. E 21 231Google Scholar
[17] 周建臣, 耿兴国, 林可君, 张永建, 臧渡洋 2014 物理学报 63 216801Google Scholar
Zhou J C, Geng X G, Lin K J, Zhang Y J, Zang D Y 2014 Acta Phys. Sin. 63 216801Google Scholar
[18] Noblin X, Buguin A, Brochard-Wyart F 2004 Eur. Phys. J. E 14 395Google Scholar
[19] Shin Y S, Lim H C 2014 Eur. Phys. J. E 37 1Google Scholar
[20] Kim H, Lim H C 2015 J. Phys. Chem. B 119 6740Google Scholar
[21] Park C S, Kim H, Lim H C 2016 Exp. Therm. Fluid Sci. 78 112Google Scholar
[22] Ramos S M M 2008 Nucl. Instrum. Methods Phys. Res., Sect. B 266 3143Google Scholar
[23] Ehrhorn J, Semke W 2013 Folia Parasit. 5 243Google Scholar
[24] Li Y and Umemura A 2014 Int. J. Multiphase Flow 60 64Google Scholar
[25] James A J, Smith M K and Glezer A 2003 J. Fluid Mech. 476 29Google Scholar
[26] 王瑞金, 张凯, 王刚 2007 Fluent技术基础与应用实例 (北京: 清华大学出版社) 第136−150页
Wang R J, Zhang K, Wang G 2007 Fluent Technology Foundation and Application Examples (Beijing: Tsinghua University Press) pp136−150 (in Chinese)
[27] Brackbill J U, Kothe D B, Zemach C 1992 J. Comput. Phys. 100 335Google Scholar
[28] Chernova A A, Kopysov S P, Tonkov L E 2016 IOP Conference Series: Mater. Sci. Eng. 158 1Google Scholar
[29] Kistler S F 1993 Wettability (New York: Marcel Dekker) pp311−429
-
表 1 共振频率的理论值和实验值对比
Table 1. Comparisons of theoretical and experimental results for resonance frequency of a 5
${\text{μ}}\mathrm{L}$ droplet.Mode n Rayleigh方程
计算值 f/Hz共振频率
实验值 f/Hz2 96 85 4 288 226 6 526 469 8 804 635 -
[1] Singhal V, Garimella S V, Raman A 2004 Appl. Mech. Rev. 57 191Google Scholar
[2] Vukasinovic B, Smith M K, Glezer A 2004 Phys. Fluid 16 306Google Scholar
[3] Nisisako T, Torri T 2007 Adv. Mater. 19 1489Google Scholar
[4] Shan Y G, Wang Y L, Coyle T 2013 Appl. Therm. Eng. 51 690Google Scholar
[5] 高超, 袁俊杰, 曹进军, 杨荟楠, 单彦广 2019 物理学报 68 140204Google Scholar
Gao C, Yuan J J, Cao J J, Yang H N, Shan Y G 2019 Acta Phys. Sin. 68 140204Google Scholar
[6] 张永建 2015 博士学位论文 (西安: 西北工业大学)
Zhang Y J 2015 Ph. D. Dissertation (Xian: Northwestern Polytechnical University) (in Chinese)
[7] Kabi P, Chattopadhyay B, Bhattacharyya S, Chaudhuri S, Basu S 2018 Langmuir 34 12642Google Scholar
[8] Kelvin L 1882 Mathematical and Physical Papers (London: Cambridge University Press) pp178−181
[9] Rayleigh L 1879 Proc. R. Soc. London 29 71Google Scholar
[10] Lamb H 1932 Hydrodynamics (London: Cambridge University press) p606
[11] Strani M, Sabetta F 1984 J. Fluid Mech. 141 233Google Scholar
[12] Ko S H, Lee S J, Kang K H 2009 Appl. Phys. Lett. 94 194102Google Scholar
[13] 邵学鹏, 解文军 2012 物理学报 61 134302Google Scholar
Shao X P, Xie W J 2012 Acta Phys. Sin. 61 134302Google Scholar
[14] Brunet P, Eggers J, Deegan R D 2009 Eur. Phys. J-Spec. Top. 166 11Google Scholar
[15] Noblin X, Buguin A, Brochard-Wyart F 2009 Eur. Phys. J. E 166 7Google Scholar
[16] Dong L, Chaudhury A, Chaudhury M K 2006 Eur. Phys. J. E 21 231Google Scholar
[17] 周建臣, 耿兴国, 林可君, 张永建, 臧渡洋 2014 物理学报 63 216801Google Scholar
Zhou J C, Geng X G, Lin K J, Zhang Y J, Zang D Y 2014 Acta Phys. Sin. 63 216801Google Scholar
[18] Noblin X, Buguin A, Brochard-Wyart F 2004 Eur. Phys. J. E 14 395Google Scholar
[19] Shin Y S, Lim H C 2014 Eur. Phys. J. E 37 1Google Scholar
[20] Kim H, Lim H C 2015 J. Phys. Chem. B 119 6740Google Scholar
[21] Park C S, Kim H, Lim H C 2016 Exp. Therm. Fluid Sci. 78 112Google Scholar
[22] Ramos S M M 2008 Nucl. Instrum. Methods Phys. Res., Sect. B 266 3143Google Scholar
[23] Ehrhorn J, Semke W 2013 Folia Parasit. 5 243Google Scholar
[24] Li Y and Umemura A 2014 Int. J. Multiphase Flow 60 64Google Scholar
[25] James A J, Smith M K and Glezer A 2003 J. Fluid Mech. 476 29Google Scholar
[26] 王瑞金, 张凯, 王刚 2007 Fluent技术基础与应用实例 (北京: 清华大学出版社) 第136−150页
Wang R J, Zhang K, Wang G 2007 Fluent Technology Foundation and Application Examples (Beijing: Tsinghua University Press) pp136−150 (in Chinese)
[27] Brackbill J U, Kothe D B, Zemach C 1992 J. Comput. Phys. 100 335Google Scholar
[28] Chernova A A, Kopysov S P, Tonkov L E 2016 IOP Conference Series: Mater. Sci. Eng. 158 1Google Scholar
[29] Kistler S F 1993 Wettability (New York: Marcel Dekker) pp311−429
计量
- 文章访问数: 6131
- PDF下载量: 171
- 被引次数: 0