搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于怪波实现光脉冲串的全光放大

王艳 李禄

引用本文:
Citation:

基于怪波实现光脉冲串的全光放大

王艳, 李禄

Amplification of optical pulse train based on Peregrine rogue wave

Wang Yan, Li Lu
PDF
HTML
导出引用
  • 本文基于非线性薛定谔方程的Peregrine怪波解, 讨论有理分式的脉冲动力学, 基于其特性并利用谱过滤方法, 提出一种光脉冲串的放大方法. 连续波泵浦与频谱过滤器相结合, 能够实现光放大器作用. 这一思路被应用到光脉冲串的长距离传输, 以4级放大为例, 实现了光脉冲串的级联放大, 并且通过矩形脉冲截断, 能够实现有限个数脉冲的放大. 其次, 以实验上可控的周期调制的平面波作为初始输入, 能够产生放大脉冲串, 且最大放大脉冲串产生的位置与调制强度有关. 改变调制强度的大小, 能够影响最大放大脉冲串所产生的位置. 研究结果表明, 对于不同频率的输入脉冲串, 利用此方法可以实现放大, 并且通过改变调制强度的大小, 能够实现两路不同频率信号的同时放大.
    In this paper, we discuss the pulse dynamics of rational fraction based on the Peregrine rogue wave solution of nonlinear Schrödinger equation. Based on its properties and using the spectral filtering, the amplification of optical pulse train is proposed. The results show that the combination of a continuous-wave pump and a spectral filter positioned in fiber can act as an amplifier. And the idea is applied to the long-haul transmission of optical pulse train and four amplification periods are demonstrated. Particularly, the amplification of limited number of pulses can be realized by rectangular pulse truncation and the number of pulses can be adjusted by changing the parameters. The periodically modulated plane wave that can be controlled experimentally is taken as an input which can produce the maximumly amplified zero background pulse train and the location of maximumly amplified pulse train relates to the modulation intensity. The location of the maximumly amplified zero background pulse train changes with the modulation intensity. The results show that for two input signals with different frequencies, they can realize the amplification with the above method. By changing the modulation intensity the simultaneous amplification for two signals with different frequencies can be realized.
      通信作者: 王艳, Annie@sxu.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 11705108) 资助的课题.
      Corresponding author: Wang Yan, Annie@sxu.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11705108).
    [1]

    Kharif C, Pelinovsky E, Slunyaev A 2009 Rogue Waves in the Ocean (Springer)

    [2]

    Akhmediev N, Soto-Crespo J M, Ankiewicz A 2009 Phys. Lett. A 373 2137Google Scholar

    [3]

    Peregrine D H 1983 J. Austral. Math. Soc. Ser. B 25 16Google Scholar

    [4]

    Onorato M, Residori S, Bortolozzo U, Montina A, Arecchi F 2013 Phys. Rep. 528 47Google Scholar

    [5]

    Dai C Q, Wang Y Y 2015 Nonlinear Dyn 80 715Google Scholar

    [6]

    Malomed B A, Mihalache D 2019 Rom. J. Phys. 64 106

    [7]

    Baronio F 2017 Opt. Lett. 42 1756Google Scholar

    [8]

    李淑青, 杨光晔, 李禄 2014 物理学报 63 104215Google Scholar

    [9]

    Dai C Q, Wang Y Y, Zhang J F 2020 Nonlinear Dyn. 102 379Google Scholar

    [10]

    Dai C Q, Liu J, Fan Y, Yu D G 2017 Nonlinear Dyn. 88 1373Google Scholar

    [11]

    AuDo F, Kibler B, Fatome J, Finot C 2018 Opt. Lett. 43 2864Google Scholar

    [12]

    Frostig H, Vidal I, Fischer R, Sheinfux H H, Silberberg Y 2020 Optica 7 864Google Scholar

    [13]

    Agafontsev D S, Randoux S, Suret P 2021 Phys. Rev. E 103 032209Google Scholar

    [14]

    Sun Z Y, Yu X 2021 Phys. Rev. E 103 062203Google Scholar

    [15]

    Bonatto C, Feyereisen M, Barland S, Giudici M, Masoller C, Leite J R R, Tredicce J R 2011 Phys. Rev. Lett. 107 053901Google Scholar

    [16]

    Dudley J M, Dias F, Erkintalo M, Genty G 2014 Nat. Photon. 8 755Google Scholar

    [17]

    Yan Z Y 2010 Commun. Theor. Phys. 54 947Google Scholar

    [18]

    Shats M, Punzmann H, Xia H 2010 Phys. Rev. Lett. 104 104503Google Scholar

    [19]

    Chabchoub A, Hoffmann N P, Akhmediev N 2011 Phys. Rev. Lett. 106 204502Google Scholar

    [20]

    Dematteis G, Grafke T, Onorato M, Eijnden E V 2019 Phys. Rev. X 9 041057Google Scholar

    [21]

    Bailung H S, Sharma K, Nakamura Y 2011 Phys. Rev. Lett. 107 255005Google Scholar

    [22]

    陈智敏, 段文山 2020 物理学报 69 014701Google Scholar

    Chen Z M, Duan W S 2020 Acta Phys. Sin. 69 014701Google Scholar

    [23]

    李再东, 郭奇奇 2020 物理学报 69 017501Google Scholar

    Li Z D, Guo Q Q 2020 Acta Phys. Sin. 69 017501Google Scholar

    [24]

    Kibler B, Fatome J, Finot C, Millot G, Dias F, Genty G, Akhmediev N, Dudley J M 2010 Nat. Phys. 6 790Google Scholar

    [25]

    Hammani K, Kibler B, Finot C, Morin P, Fatome J, Dudley J M, Millot G 2011 Opt. Lett. 36 112Google Scholar

    [26]

    李淑青, 程永喜, 刘阳 2020 量子光学学报 26 180Google Scholar

    Li S Q, Chen Y X, Liu Y 2020 J. Quantum Opt. 26 180Google Scholar

    [27]

    李敏, 王博婷, 许韬, 水涓涓 2020 物理学报 69 010502Google Scholar

    Li M, Wang B T, Xu T, Shui J J 2020 Acta Phys. Sin. 69 010502Google Scholar

    [28]

    Yang G Y, Li L, Jia S T 2012 Phys. Rev. E 85 046608Google Scholar

    [29]

    张解放, 金美贞 2020 物理学报 69 214203Google Scholar

    Zhang J F, Jin M Z 2020 Acta Phys. Sin. 69 214203Google Scholar

    [30]

    Sgrignuoli F, Chen Y, Gorsky S, Britton W A, Negro L D 2021 Phys. Rev. B 103 195403Google Scholar

    [31]

    He J S, Zhang H R, Wang L H, Porsezian K, Fokas A S 2013 Phys. Rev. E 87 052914Google Scholar

    [32]

    Wang Q, Liu D, Li X 2019 Commun. Nonlinear Sci. 75 302Google Scholar

    [33]

    Gao P, Zhao L C, Yang Z Y, Li X H, Yang W L 2020 Opt. Lett. 45 2399Google Scholar

    [34]

    Wang L H, He J S, Xu H, Wang J, Porsezian K 2017 Phys. Rev. E 95 042217Google Scholar

    [35]

    Yang G Y, Li L, Jia S T, Mihalache D 2013 Rom. Rep. Phys. 65 902

    [36]

    Yang G Y, Wang Y, Qin Z, Malomed B A, Mihalache D, Li L 2014 Phys. Rev. E 90 062909Google Scholar

    [37]

    Yang G Y, Li L, Jia S T, Mihalache D 2013 Rom. Rep. Phys. 65 391Google Scholar

    [38]

    Fatome J, Kibler B, Finot C 2013 Opt. Lett. 38 1663Google Scholar

    [39]

    Wang Y, Song L J, Li L, Malomed B A 2015 J. Opt. Soc. Am. B 32 2257Google Scholar

    [40]

    Jia H P, Yang R C, Tian J P, Zhang W M 2019 Appl. Opt. 58 912Google Scholar

    [41]

    杨光晔 2014 博士学位论文 (太原: 山西大学)

    Yang G Y 2014 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)

    [42]

    Wang Y, Song L J, Li L 2016 Appl. Opt. 55 7241Google Scholar

    [43]

    Wang Y, Lu L 2017 Rom. Rep. Phys. 62 205

    [44]

    Yang G Y, Li L, Tian J P 2016 Acta Opt. Sin. 36 0619002Google Scholar

    [45]

    Yang G Y, Wu F O, Helena E, Lopez A, Christodoulides D N 2020 Opt. Commun. 473 125899Google Scholar

    [46]

    Agrawal G P 著 (贾东方, 余震虹 译) 2010 (北京: 电子工业出版社) 第103−104页

    Agrawal G P (translated by Jia D F, Yu Z H) 2010 Applications of Nonlinear Fiber Optics (Beijing: Publishing House of Electronics Industry) pp103−104 (in Chinese)

    [47]

    Hammani K, Wetzel B, Kibler B, Fatome J, Finot C, Millot G, Akhmediev N, Dudley J M 2011 Opt. Lett. 36 2140Google Scholar

    [48]

    Dudley J M, Genty G, Dias F. Kibler B, Akhmediev N 2009 Opt. Express 17 21497Google Scholar

  • 图 1  光脉冲串稳定传输图 (a) 零背景脉冲串; (b) 零背景脉冲串稳定传输, 其中$ a = 0.4, $P0 = 0.7 W

    Fig. 1.  Stable transmission of the pulse trains: (a) Zero background pulse trains; (b) stable transmission of the pulse trains, where $ a = 0.4, $P0 = 0.7 W.

    图 2  光脉冲串的放大 (a) 初始入射脉冲串; (b) 衰减脉冲串; (c) 放大脉冲串与初始脉冲串的比较, 其中$ a = 0.45, $ P0 = 0.7 W.

    Fig. 2.  Amplification of the pulse trains: (a) Initial input pulse trains; (b) attenuated pulse trains; (c) comparison of the amplified and the initial pulse trains, where $ a = 0.4, $ P0 = 0.7 W.

    图 3  光脉冲串4级放大, 其中$ a = 0.45, $${P_0} = 0.7\;{\text{W}}$

    Fig. 3.  4-cascade amplification of optical pulse trains, where $ a = 0.4{\text{5}}, $ P0 = 0.7 W.

    图 4  有限个数脉冲的放大, 其中$k = 3$, P0 = 0.7 W $a = 0.4$

    Fig. 4.  Amplification for limited number of pulses, where $k = 3,$ P0 = 0.7 W $a = 0.4.$

    图 5  调制强度A与最大放大脉冲串位置的关系

    Fig. 5.  Location relationship between modulation intensity A and the maximum amplified pulse trains.

    图 6  不同频率脉冲串的放大 (a) 初始输入; (b)零背景的放大脉冲串, 其中${\varOmega _1}=0.3,$${\varOmega _2}=0.6,$${A_1}=0.2,$${A_2}=0.07$

    Fig. 6.  Amplification for different frequencies of the pulse trains: (a) Initial input pulse trains; (b) amplified pulse trains of zero background, where ${\varOmega _1}=0.3, $${\varOmega _2}=0.6, $${A_1}=0.2, $${A_2}=0.07$

    图 7  Lmax1Lmax2之间放大脉冲的功率

    Fig. 7.  Power of the amplified pulse trains between Lmax1 and Lmax2.

    图 8  不同频率脉冲串的同时放大 (a)初始输入; (b)零背景的放大脉冲串, 其中${\varOmega _1}{\text{ = }}0.3, $${\varOmega _2}=0.6, $${A_1}=0.2,$ ${A_2}=$0.07

    Fig. 8.  Simultaneous amplification for different frequencies of the pulse trains: (a) Initial input pulse trains; (b) amplified pulse trains of zero background, where ${\varOmega _1}=0.3, $${\varOmega _2}=0.6, $${A_1}=0.2, $${A_2}=0.07$

  • [1]

    Kharif C, Pelinovsky E, Slunyaev A 2009 Rogue Waves in the Ocean (Springer)

    [2]

    Akhmediev N, Soto-Crespo J M, Ankiewicz A 2009 Phys. Lett. A 373 2137Google Scholar

    [3]

    Peregrine D H 1983 J. Austral. Math. Soc. Ser. B 25 16Google Scholar

    [4]

    Onorato M, Residori S, Bortolozzo U, Montina A, Arecchi F 2013 Phys. Rep. 528 47Google Scholar

    [5]

    Dai C Q, Wang Y Y 2015 Nonlinear Dyn 80 715Google Scholar

    [6]

    Malomed B A, Mihalache D 2019 Rom. J. Phys. 64 106

    [7]

    Baronio F 2017 Opt. Lett. 42 1756Google Scholar

    [8]

    李淑青, 杨光晔, 李禄 2014 物理学报 63 104215Google Scholar

    [9]

    Dai C Q, Wang Y Y, Zhang J F 2020 Nonlinear Dyn. 102 379Google Scholar

    [10]

    Dai C Q, Liu J, Fan Y, Yu D G 2017 Nonlinear Dyn. 88 1373Google Scholar

    [11]

    AuDo F, Kibler B, Fatome J, Finot C 2018 Opt. Lett. 43 2864Google Scholar

    [12]

    Frostig H, Vidal I, Fischer R, Sheinfux H H, Silberberg Y 2020 Optica 7 864Google Scholar

    [13]

    Agafontsev D S, Randoux S, Suret P 2021 Phys. Rev. E 103 032209Google Scholar

    [14]

    Sun Z Y, Yu X 2021 Phys. Rev. E 103 062203Google Scholar

    [15]

    Bonatto C, Feyereisen M, Barland S, Giudici M, Masoller C, Leite J R R, Tredicce J R 2011 Phys. Rev. Lett. 107 053901Google Scholar

    [16]

    Dudley J M, Dias F, Erkintalo M, Genty G 2014 Nat. Photon. 8 755Google Scholar

    [17]

    Yan Z Y 2010 Commun. Theor. Phys. 54 947Google Scholar

    [18]

    Shats M, Punzmann H, Xia H 2010 Phys. Rev. Lett. 104 104503Google Scholar

    [19]

    Chabchoub A, Hoffmann N P, Akhmediev N 2011 Phys. Rev. Lett. 106 204502Google Scholar

    [20]

    Dematteis G, Grafke T, Onorato M, Eijnden E V 2019 Phys. Rev. X 9 041057Google Scholar

    [21]

    Bailung H S, Sharma K, Nakamura Y 2011 Phys. Rev. Lett. 107 255005Google Scholar

    [22]

    陈智敏, 段文山 2020 物理学报 69 014701Google Scholar

    Chen Z M, Duan W S 2020 Acta Phys. Sin. 69 014701Google Scholar

    [23]

    李再东, 郭奇奇 2020 物理学报 69 017501Google Scholar

    Li Z D, Guo Q Q 2020 Acta Phys. Sin. 69 017501Google Scholar

    [24]

    Kibler B, Fatome J, Finot C, Millot G, Dias F, Genty G, Akhmediev N, Dudley J M 2010 Nat. Phys. 6 790Google Scholar

    [25]

    Hammani K, Kibler B, Finot C, Morin P, Fatome J, Dudley J M, Millot G 2011 Opt. Lett. 36 112Google Scholar

    [26]

    李淑青, 程永喜, 刘阳 2020 量子光学学报 26 180Google Scholar

    Li S Q, Chen Y X, Liu Y 2020 J. Quantum Opt. 26 180Google Scholar

    [27]

    李敏, 王博婷, 许韬, 水涓涓 2020 物理学报 69 010502Google Scholar

    Li M, Wang B T, Xu T, Shui J J 2020 Acta Phys. Sin. 69 010502Google Scholar

    [28]

    Yang G Y, Li L, Jia S T 2012 Phys. Rev. E 85 046608Google Scholar

    [29]

    张解放, 金美贞 2020 物理学报 69 214203Google Scholar

    Zhang J F, Jin M Z 2020 Acta Phys. Sin. 69 214203Google Scholar

    [30]

    Sgrignuoli F, Chen Y, Gorsky S, Britton W A, Negro L D 2021 Phys. Rev. B 103 195403Google Scholar

    [31]

    He J S, Zhang H R, Wang L H, Porsezian K, Fokas A S 2013 Phys. Rev. E 87 052914Google Scholar

    [32]

    Wang Q, Liu D, Li X 2019 Commun. Nonlinear Sci. 75 302Google Scholar

    [33]

    Gao P, Zhao L C, Yang Z Y, Li X H, Yang W L 2020 Opt. Lett. 45 2399Google Scholar

    [34]

    Wang L H, He J S, Xu H, Wang J, Porsezian K 2017 Phys. Rev. E 95 042217Google Scholar

    [35]

    Yang G Y, Li L, Jia S T, Mihalache D 2013 Rom. Rep. Phys. 65 902

    [36]

    Yang G Y, Wang Y, Qin Z, Malomed B A, Mihalache D, Li L 2014 Phys. Rev. E 90 062909Google Scholar

    [37]

    Yang G Y, Li L, Jia S T, Mihalache D 2013 Rom. Rep. Phys. 65 391Google Scholar

    [38]

    Fatome J, Kibler B, Finot C 2013 Opt. Lett. 38 1663Google Scholar

    [39]

    Wang Y, Song L J, Li L, Malomed B A 2015 J. Opt. Soc. Am. B 32 2257Google Scholar

    [40]

    Jia H P, Yang R C, Tian J P, Zhang W M 2019 Appl. Opt. 58 912Google Scholar

    [41]

    杨光晔 2014 博士学位论文 (太原: 山西大学)

    Yang G Y 2014 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)

    [42]

    Wang Y, Song L J, Li L 2016 Appl. Opt. 55 7241Google Scholar

    [43]

    Wang Y, Lu L 2017 Rom. Rep. Phys. 62 205

    [44]

    Yang G Y, Li L, Tian J P 2016 Acta Opt. Sin. 36 0619002Google Scholar

    [45]

    Yang G Y, Wu F O, Helena E, Lopez A, Christodoulides D N 2020 Opt. Commun. 473 125899Google Scholar

    [46]

    Agrawal G P 著 (贾东方, 余震虹 译) 2010 (北京: 电子工业出版社) 第103−104页

    Agrawal G P (translated by Jia D F, Yu Z H) 2010 Applications of Nonlinear Fiber Optics (Beijing: Publishing House of Electronics Industry) pp103−104 (in Chinese)

    [47]

    Hammani K, Wetzel B, Kibler B, Fatome J, Finot C, Millot G, Akhmediev N, Dudley J M 2011 Opt. Lett. 36 2140Google Scholar

    [48]

    Dudley J M, Genty G, Dias F. Kibler B, Akhmediev N 2009 Opt. Express 17 21497Google Scholar

  • [1] 饶继光, 陈生安, 吴昭君, 贺劲松. 空间位移$\mathcal{PT}$对称非局域非线性薛定谔方程的高阶怪波解. 物理学报, 2023, 72(10): 104204. doi: 10.7498/aps.72.20222298
    [2] 孙凡, 文峰, 武保剑, Tan Ming-Ming, 凌云, 邱昆. 基于双向正交泵浦半导体光放大器结构的全光相位保持幅度再生技术. 物理学报, 2022, 71(20): 204204. doi: 10.7498/aps.71.20220703
    [3] 韩亚帅, 张啸, 张昭, 屈军, 王军民. 基于级联光参量放大器的碱金属原子跃迁线波段压缩光源分析. 物理学报, 2022, 71(7): 074202. doi: 10.7498/aps.71.20212131
    [4] 徐笑吟, 刘胜帅, 荆杰泰. 基于四波混频过程的纠缠光放大. 物理学报, 2022, 71(5): 050301. doi: 10.7498/aps.71.20211324
    [5] 张解放, 俞定国, 金美贞. 二维自相似变换理论和线怪波激发. 物理学报, 2022, 71(1): 014205. doi: 10.7498/aps.71.20211417
    [6] Xiaoyin Xu, shengshuai liu, 荆杰泰. 基于四波混频过程的纠缠光放大. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211324
    [7] 陈智敏, 段文山. 弹性管中的怪波. 物理学报, 2020, 69(1): 014701. doi: 10.7498/aps.69.20191308
    [8] 张解放, 金美贞. Fokas系统的怪波激发. 物理学报, 2020, 69(21): 214203. doi: 10.7498/aps.69.20200710
    [9] 闻小永, 王昊天. 高阶Ablowitz-Ladik方程的局域波解及稳定性分析. 物理学报, 2020, 69(1): 010205. doi: 10.7498/aps.69.20191235
    [10] 李敏, 王博婷, 许韬, 水涓涓. 四阶色散非线性薛定谔方程的明暗孤立波和怪波的形成机制. 物理学报, 2020, 69(1): 010502. doi: 10.7498/aps.69.20191384
    [11] 高松, 盛新志, 冯震, 吴重庆, 董宏辉. 基于半导体光放大器中非线性偏振旋转效应单一光缓存环全光时隙交换处理能力研究. 物理学报, 2014, 63(8): 084205. doi: 10.7498/aps.63.084205
    [12] 李淑青, 杨光晔, 李禄. Hirota方程的怪波解及其传输特性研究. 物理学报, 2014, 63(10): 104215. doi: 10.7498/aps.63.104215
    [13] 胡文成, 张解放, 赵辟, 楼吉辉. 光纤放大器中非自治光畸波的传播控制研究. 物理学报, 2013, 62(2): 024216. doi: 10.7498/aps.62.024216
    [14] 王菊, 于晋龙, 罗俊, 王文睿, 韩丙辰, 吴波, 郭精忠, 杨恩泽. 基于信号抽运的光纤光参量放大的全光3R再生系统. 物理学报, 2011, 60(9): 091201. doi: 10.7498/aps.60.091201
    [15] 于晋龙, 罗俊, 韩丙辰, 郭精忠, 吴波, 王菊, 张晓媛, 杨恩泽. 基于光纤光参量放大的异步双波长全光再生技术研究. 物理学报, 2010, 59(9): 6138-6144. doi: 10.7498/aps.59.6138
    [16] 高 玮, 吕志伟, 何伟明, 朱成禹, 董永康. 水中微弱光散射布里渊频谱选择性光放大研究. 物理学报, 2007, 56(5): 2693-2698. doi: 10.7498/aps.56.2693
    [17] 马 晶, 章若冰, 张伟力, 王清月. 飞秒光参量放大中三波群速失配的补偿. 物理学报, 2005, 54(2): 755-762. doi: 10.7498/aps.54.755
    [18] 蒋 雁, 崔一平, 庞叔鸣. 半导体光放大器中非简并四波混频效应的理论分析. 物理学报, 1999, 48(4): 673-684. doi: 10.7498/aps.48.673
    [19] 蒋华北. 自由电子激光放大器频谱振荡现象的研究. 物理学报, 1986, 35(6): 792-796. doi: 10.7498/aps.35.792
    [20] 李铁城, 朱振和. 光的受激放大. 物理学报, 1965, 21(6): 1276-1292. doi: 10.7498/aps.21.1276
计量
  • 文章访问数:  4007
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-22
  • 修回日期:  2021-06-25
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-20

/

返回文章
返回