搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米组装相变储热材料的热设计前沿

冯妍卉 冯黛丽 褚福强 邱琳 孙方远 林林 张欣欣

引用本文:
Citation:

纳米组装相变储热材料的热设计前沿

冯妍卉, 冯黛丽, 褚福强, 邱琳, 孙方远, 林林, 张欣欣

Thermal design frontiers of nano-assembled phase change materials for heat storage

Feng Yan-Hui, Feng Dai-Li, Chu Fu-Qiang, Qiu Lin, Sun Fang-Yuan, Lin Lin, Zhang Xin-Xin
PDF
HTML
导出引用
  • 本文简单回顾了固液相变储热材料发展历程, 重点针对纳米多孔定形相变材料, 从材料层面的研发设计, 到热物理层面的微观限域空间负载、结晶、导热机理, 乃至围绕异相/异质匹配提出的显著提升相变蓄传热性能的强化手段进行了总结. 同时, 指出了目前受制于单一尺度孔径无法兼顾储释热的密度和速率的现状, 并探讨在此基础上借助新型多级尺度孔径的骨架材料以突破瓶颈的可能. 最后, 系统梳理了与之伴随的一系列亟待解决的科学问题、机遇和挑战.
    The present paper briefly reviews the development progress of solid-liquid phase change materials, particularly the nano-porous shape-stabilized phase change materials. We outline the designs and syntheses of the heat storage functional materials and the thermophysical mechanism of loading, crystallization, and thermal transport in nano-confined space. Besides, the remarkable methods to enhance the heat storage and release performance of heterogeneous materials are included. However, at present, the single-size porous materials cannot satisfy the requirements for high heat storage/release rate and great thermal energy density simultaneously. Based on this, the novel hierarchical porous frameworks materials are explored to overcome these obstacles. For this purpose, some scientific problems, opportunities, and challenges are summarized at the end of this paper.
      通信作者: 冯妍卉, yhfeng@me.ustb.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFA0702300)、国家自然科学基金(批准号: 51876007, 52176054)和北京市自然科学基金(批准号: 3192022)资助的课题
      Corresponding author: Feng Yan-Hui, yhfeng@me.ustb.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0702300), the National Natural Science Foundation of China (Grant Nos. 51876007, 52176054), and the Natural Science Foundation of Beijing, China (Grant No. 3192022).
    [1]

    Feng D, Feng Y, Qiu L, Li P, Zang Y, Zou H, Yu Z, Zhang X 2019 Renew. Sust. Energ. Rev. 109 578Google Scholar

    [2]

    Feng D, Li P, Feng Y, Yan Y, Zhang X 2021 Micropor. Mesopor. Mat. 310 110631Google Scholar

    [3]

    Li A, Wang J, Dong C, Dong W, Atinafu D, Chen X, Gao H, Wang G. 2018 Appl. Energ. 217 369Google Scholar

    [4]

    Yu Z, Feng Y, Feng D, Zhang X 2021 Micropor. Mesopor. Mat. 312 110781Google Scholar

    [5]

    Feng D, Feng Y, Zang Y, Li P, Zhang X 2019 Micropor. Mesopor. Mat. 280 124Google Scholar

    [6]

    Zhang J, Feng Y, Yuan H, Feng D, Zhang X, Wang G 2015 Comp. Mater. Sci. 109 300Google Scholar

    [7]

    Feng D, Feng Y, Li P, Zang Y, Wang C, Zhang X 2020 Micropor. Mesopor. Mat. 292 109756Google Scholar

    [8]

    Qiu L, Zou H, Wang X, Feng Y, Zhang X, Zhao J, Zhang X, Li Q 2019 Carbon 141 497Google Scholar

    [9]

    Xu D, Hanus R, Xiao Y, Wang S, Synder G, Hao Q 2018 Mater. Today Phys. 6 53Google Scholar

    [10]

    Qiu L, Guo P, Kong Q, Tan C, Liang K, Wei J, Tey J, Feng Y, Zhang X, Tay B 2019 Carbon 145 725Google Scholar

    [11]

    Xu Y, Wang X, Hao Q 2021 Compos. Commum. 24 100617Google Scholar

    [12]

    Zheng K, Sun F, Zhu J, Ma Y, Li X, Tang D, Wang F, Wang X 2016 ACS Nano. 10 7792Google Scholar

    [13]

    Zhou Y, Wu S, Zhu P, Wu F, Liu F, Murugadoss V, Winchester W, Nautiyal A, Wang Z, Guo Z 2020 ES Mater. Manuf. Mass. Tran. 7 4Google Scholar

    [14]

    Chang G, Sun F, Wang L, Che Z, Wang X, Wang J, Kim M, Zheng H 2019 ACS Appl. Mater. Inter. 11 26507Google Scholar

    [15]

    Wang S, Xu D, Gurunathan R, Snyder G, Hao Q 2020 J. Materiomics. 6 248Google Scholar

    [16]

    Hao Q, Garg J 2021 ES Mater. Manuf. Mass. Tran. 14 36Google Scholar

    [17]

    Feng D, Zang Y, Li P, Feng Y, Yan Y, Zhang X 2021 Compos. Sci. Technol. 210 108832Google Scholar

    [18]

    Tang J, Yang M, Yu F, Chen X, Tan L, Wang G 2017 Appl. Energ. 187 514Google Scholar

    [19]

    Wang H, Xu Q, Luo Q, Song Y, Tian Y, Chen M, Xuan Y, Jin Y, Jia Y, Li Y, Ding Y 2021 Int. J. Heat. Mass. Tran. 175 121405Google Scholar

    [20]

    Feng D, Nan J, Feng Y, Yan Y, Zhang X 2021 Int. J. Heat. Mass. Tran. 179 121748Google Scholar

  • 图 1  纳米孔组装相变材料机理探究工作

    Fig. 1.  Research on the mechanism of nanopore assembly phase change materials.

  • [1]

    Feng D, Feng Y, Qiu L, Li P, Zang Y, Zou H, Yu Z, Zhang X 2019 Renew. Sust. Energ. Rev. 109 578Google Scholar

    [2]

    Feng D, Li P, Feng Y, Yan Y, Zhang X 2021 Micropor. Mesopor. Mat. 310 110631Google Scholar

    [3]

    Li A, Wang J, Dong C, Dong W, Atinafu D, Chen X, Gao H, Wang G. 2018 Appl. Energ. 217 369Google Scholar

    [4]

    Yu Z, Feng Y, Feng D, Zhang X 2021 Micropor. Mesopor. Mat. 312 110781Google Scholar

    [5]

    Feng D, Feng Y, Zang Y, Li P, Zhang X 2019 Micropor. Mesopor. Mat. 280 124Google Scholar

    [6]

    Zhang J, Feng Y, Yuan H, Feng D, Zhang X, Wang G 2015 Comp. Mater. Sci. 109 300Google Scholar

    [7]

    Feng D, Feng Y, Li P, Zang Y, Wang C, Zhang X 2020 Micropor. Mesopor. Mat. 292 109756Google Scholar

    [8]

    Qiu L, Zou H, Wang X, Feng Y, Zhang X, Zhao J, Zhang X, Li Q 2019 Carbon 141 497Google Scholar

    [9]

    Xu D, Hanus R, Xiao Y, Wang S, Synder G, Hao Q 2018 Mater. Today Phys. 6 53Google Scholar

    [10]

    Qiu L, Guo P, Kong Q, Tan C, Liang K, Wei J, Tey J, Feng Y, Zhang X, Tay B 2019 Carbon 145 725Google Scholar

    [11]

    Xu Y, Wang X, Hao Q 2021 Compos. Commum. 24 100617Google Scholar

    [12]

    Zheng K, Sun F, Zhu J, Ma Y, Li X, Tang D, Wang F, Wang X 2016 ACS Nano. 10 7792Google Scholar

    [13]

    Zhou Y, Wu S, Zhu P, Wu F, Liu F, Murugadoss V, Winchester W, Nautiyal A, Wang Z, Guo Z 2020 ES Mater. Manuf. Mass. Tran. 7 4Google Scholar

    [14]

    Chang G, Sun F, Wang L, Che Z, Wang X, Wang J, Kim M, Zheng H 2019 ACS Appl. Mater. Inter. 11 26507Google Scholar

    [15]

    Wang S, Xu D, Gurunathan R, Snyder G, Hao Q 2020 J. Materiomics. 6 248Google Scholar

    [16]

    Hao Q, Garg J 2021 ES Mater. Manuf. Mass. Tran. 14 36Google Scholar

    [17]

    Feng D, Zang Y, Li P, Feng Y, Yan Y, Zhang X 2021 Compos. Sci. Technol. 210 108832Google Scholar

    [18]

    Tang J, Yang M, Yu F, Chen X, Tan L, Wang G 2017 Appl. Energ. 187 514Google Scholar

    [19]

    Wang H, Xu Q, Luo Q, Song Y, Tian Y, Chen M, Xuan Y, Jin Y, Jia Y, Li Y, Ding Y 2021 Int. J. Heat. Mass. Tran. 175 121405Google Scholar

    [20]

    Feng D, Nan J, Feng Y, Yan Y, Zhang X 2021 Int. J. Heat. Mass. Tran. 179 121748Google Scholar

计量
  • 文章访问数:  4746
  • PDF下载量:  275
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-24
  • 修回日期:  2021-12-03
  • 上网日期:  2021-12-24
  • 刊出日期:  2022-01-05

/

返回文章
返回