-
得益于单光子探测器的超高灵敏度, 光子计数成像系统近年来成为极弱光探测成像领域的研究热点. 基于单点扫描的光子计数成像系统, 以光子累积的方式获取大量返回光子事件后重建目标图像. 然而, 单像素探测时间固定导致的光子事件累积冗余或累积不足的问题, 限制了系统的成像效率. 本文提出了一种基于自动选取单像素最佳累积时间的时间自适应扫描方法, 并分别进行了单点测距和扫描成像实验. 结果表明, 本文提出的方法在重建质量接近的深度图像(64 × 88)时的数据总获取时间相比单像素固定累积时间的扫描方法降低了一个数量级, 极大地提高了扫描数据获取的效率, 为光子计数成像系统快速成像提供了新思路.Photon counting imaging system has recently received a lot of attention in ultra-weak light detection. It has high sensitivity and temporal resolution. The single-point scanning photon counting imaging system typically accumulates a large number of photon events to reconstruct depth image. Acquisition time is redundant or insufficient, which limits imaging efficiency. In this work, a new method called adaptive acquisition time scanning method (AATSM) is proposed to solve this dilemma. Comparing with the fixed acquisition time of every pixel, the method can automatically select the acquisition time of per pixel to reduce total time of data collecting while obtaining depth images. In experiment, we acquire the depth images with the same quality by different scanning methods, showing the feasibility of AATSM. The total time of collecting data by the AATSM can be reduced to 11.87%, compared with fixed acquisition time of every pixel. This demonstrates the capability of speed scanning of AATSM, which can be used for the fast imaging of photon counting system.
-
Keywords:
- photon counting /
- accumulate /
- adaptive scanning
[1] Losev A V, Zavodilenko V V, Koziy A A, Kurochkin Y V, Gorbatsevich A A 2021 Russ. Microelectron. 50 108Google Scholar
[2] 贝克尔 著 (屈军乐 译) 2009 高级时间相关单光子计数技术 (北京: 科学出版社) 第198—200页
Becker W (translated by Qun J L) 2009 Advanced Time-Correlated Single Photon Counting Techniques (Beijing: Science Press) pp198–200 (in Chinese)
[3] Neumann T A, Martino A J, Markus T M, Bae S, Bock M R, Brenner A C, Brunt K M, Cavanaugh J, Fernandes S T, Hancock D W, Harbeck K, Lee J, Kurtz N T, Luers P J, Luthcke S B, Magruder L, Pennington T A, Ramos-Izquierdo L, Rebold T, Skoog J, Thomas T C 2019 Remote Sens. Environ. 233 111325Google Scholar
[4] Li Z P, Ye J T, Huang X, Jiang P Y, Cao Y, Hong Y, Yu C, Zhang J, Zhang Q, Peng C Z, Xu F H, Pan J W 2021 Optica 8 344Google Scholar
[5] O'Toole M, Lindell D B, Wetzstein G 2018 Nature 555 338Google Scholar
[6] Liu X C, Guillén I, Manna M L, Nam J H, Reza S A, Le T H, Jarabo A, Gutierrez D, Velten A 2019 Nature 572 620Google Scholar
[7] Ashraf K, Varadarajan V, Rahman M D R, Walden R, Ashok A 2021 IEEE Trans. Veh. Technol. 70 3071Google Scholar
[8] Marino R M, Davis W R 2005 Lincoln Lab. J. 15 23
[9] Buller G S, McCarthy A, Ren X M, Gemmell N R, Collins R J, Krichel N J, Tanner M G, Wallace A M, Dorenbos S, Zwiller V, Hadfield R H 2012 Biosensing and Nanomedicine V San Diego, California, United States, October 10, 2012 p84601I
[10] Krichel N J, McCarthy A, Collins R J, Fernández V, Wallace A M, Buller G S 2009 Electro-Optical Remote Sensing, Photonic Technologies, and Applications III, September 18, 2009 p748202
[11] McCarthy A, Collins R J, Wallace A M, Krichel N J, Buller G S, Fernández V 2009 Appl. Opt. 48 6241Google Scholar
[12] Ren X M, Altmann Y, Tobin R, McCarthy A, McLaughlin S, Buller G S 2018 Opt. Express 26 30146Google Scholar
[13] Pawlikowska A M, Halimi A, Lamb R A, Buller G S 2017 Opt. Express 25 11919Google Scholar
[14] Halimi A, Maccarone A, Lamb A R, Buller G S, McLaughlin S 2021 IEEE Trans. Comput. Imaging 7 961Google Scholar
[15] Jiang P Y, Li Z P, Xu F H 2021 Opt. Lett. 46 1181Google Scholar
[16] Li Z P, Huang X, Cao Y, Wang B, Li Y H, Jin W J, Yu C, Zhang J, Zhang Q, Peng C Z, Xu F H, Pan J W 2020 Photonics Res. 8 1532Google Scholar
[17] Li Z P, Huang X, Jiang P Y, Hong Y, YU C, Yu C, Zhang J, Xu F H, Pan J W 2020 Opt. Express 28 4076Google Scholar
[18] Chen S M, Halimi A, Ren X M, McCarthy A, Su X Q, Buller G S, McLaughlin S 2019 Proceedings of the 27th European Signal Processing Conference (EUSIPCO) A Coruna, Spain, September 2–6, 2019 p1
[19] Chen S M, Halimi A, Ren X M, McCarthy A, Su X Q, McLaughlin S, Buller G S 2020 IEEE Trans. Image. Process. 29 3119Google Scholar
[20] 汪书潮, 苏秀琴, 朱文华, 陈松懋, 张振扬, 徐伟豪, 王定杰 2021 物理学报 70 174304Google Scholar
Wang S C, Su X Q, Zhu W H, Chen S M, Zhang Z Y, Xu W H, Wang D J 2021 Acta Phys. Sin. 70 174304Google Scholar
[21] Sun Q L, Zhang J, Dun X, Ghanem B, Peng Y F, Heidrich W 2020 ACM Trans. Graph. 39 1Google Scholar
[22] Du B C, Pang C K, Wu D, Li Z H, Peng H, Tao Y L, Wu E, Wu G 2018 Sci. Rep. 8 4198Google Scholar
[23] 吴琛怡, 汪琳莉, 施皓天, 王煜蓉, 潘海峰, 李召辉, 吴光 2021 物理学报 70 174201Google Scholar
Wu C Y, Wang L L, Shi H T, Wang Y R, Pan H F, Li Z H, Wu G 2021 Acta Phys. Sin. 70 174201Google Scholar
[24] Zheng T X, Shen G Y, Li Z H, Yang L, Zhang H Y, Wu E, Wu G 2019 Photonics Res. 7 1381Google Scholar
[25] Li Z H, Wu E, Pang C K, Du B C, Tao Y L, Peng H, Zeng H P, Wu G 2017 Opt. Express 25 10189Google Scholar
[26] Wu D, Zheng T X, Wang L L, Chen X L, Yang L, Li Z H, Wu G 2022 Opt. Laser Technol. 145 107477Google Scholar
[27] Hua K J, Liu B, Chen Z, Wang H C, Fang L, Yun J 2021 IEEE Photonics J. 13 1Google Scholar
[28] Aspert N, Santa-Cruz D, Ebrahimi T 2002 Proceedings. IEEE International Conference on Multimedia and Expo Lausanne, Switzerland, August 26–29, 2002 p705
-
表 1 测量距离与单像素累积时间
Table 1. Distance and cumulative time of each pixel.
白纸 硅胶 光盘 金属 均值 固定10 s 测量距离/m 11.870 11.861 11.880 11.866 K = 10 测量距离/m 11.856 11.856 11.846 11.856 R10 s 0.041 0.050 0.077 0.015 0.046 K = 100 测量距离/m 11.870 11.861 11.880 11.866 R10 s 0.694 0.865 1.000 0.240 0.700 表 2 AATSM的扫描时间
Table 2. Time of AATSM.
每像素最小
累积时间$ /\mathrm{m}\mathrm{s} $每像素最大
累积时间$ /\mathrm{m}\mathrm{s} $总时间$ /\mathrm{s} $ 平均每像素
累积时间$ /\mathrm{m}\mathrm{s} $AATSM 0.1 181.5 200.6 $ 35.6 $ 表 3 不同累积时间的重建图像指标对比(以单像素累积
$ 1000\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{m}\mathrm{s} $ 的重建图像为参考图像)Table 3. Metrics of the quality of reconstructed images with different acquisition time (The reference image is the reconstructed image of 1000 ms per pixel acquisition time).
AATSM 单像素累积时间$ /\mathrm{m}\mathrm{s} $ 36 300 400 总时间$ /\mathrm{s} $ $ 200.6 $ 202.8 1689.6 2252.8 RMSE$ /\mathrm{m} $ 0.048 8.307 0.047 0.0227 Hausdorff距离$ /\mathrm{m} $ 0.034 55.375 2.834 0.008 -
[1] Losev A V, Zavodilenko V V, Koziy A A, Kurochkin Y V, Gorbatsevich A A 2021 Russ. Microelectron. 50 108Google Scholar
[2] 贝克尔 著 (屈军乐 译) 2009 高级时间相关单光子计数技术 (北京: 科学出版社) 第198—200页
Becker W (translated by Qun J L) 2009 Advanced Time-Correlated Single Photon Counting Techniques (Beijing: Science Press) pp198–200 (in Chinese)
[3] Neumann T A, Martino A J, Markus T M, Bae S, Bock M R, Brenner A C, Brunt K M, Cavanaugh J, Fernandes S T, Hancock D W, Harbeck K, Lee J, Kurtz N T, Luers P J, Luthcke S B, Magruder L, Pennington T A, Ramos-Izquierdo L, Rebold T, Skoog J, Thomas T C 2019 Remote Sens. Environ. 233 111325Google Scholar
[4] Li Z P, Ye J T, Huang X, Jiang P Y, Cao Y, Hong Y, Yu C, Zhang J, Zhang Q, Peng C Z, Xu F H, Pan J W 2021 Optica 8 344Google Scholar
[5] O'Toole M, Lindell D B, Wetzstein G 2018 Nature 555 338Google Scholar
[6] Liu X C, Guillén I, Manna M L, Nam J H, Reza S A, Le T H, Jarabo A, Gutierrez D, Velten A 2019 Nature 572 620Google Scholar
[7] Ashraf K, Varadarajan V, Rahman M D R, Walden R, Ashok A 2021 IEEE Trans. Veh. Technol. 70 3071Google Scholar
[8] Marino R M, Davis W R 2005 Lincoln Lab. J. 15 23
[9] Buller G S, McCarthy A, Ren X M, Gemmell N R, Collins R J, Krichel N J, Tanner M G, Wallace A M, Dorenbos S, Zwiller V, Hadfield R H 2012 Biosensing and Nanomedicine V San Diego, California, United States, October 10, 2012 p84601I
[10] Krichel N J, McCarthy A, Collins R J, Fernández V, Wallace A M, Buller G S 2009 Electro-Optical Remote Sensing, Photonic Technologies, and Applications III, September 18, 2009 p748202
[11] McCarthy A, Collins R J, Wallace A M, Krichel N J, Buller G S, Fernández V 2009 Appl. Opt. 48 6241Google Scholar
[12] Ren X M, Altmann Y, Tobin R, McCarthy A, McLaughlin S, Buller G S 2018 Opt. Express 26 30146Google Scholar
[13] Pawlikowska A M, Halimi A, Lamb R A, Buller G S 2017 Opt. Express 25 11919Google Scholar
[14] Halimi A, Maccarone A, Lamb A R, Buller G S, McLaughlin S 2021 IEEE Trans. Comput. Imaging 7 961Google Scholar
[15] Jiang P Y, Li Z P, Xu F H 2021 Opt. Lett. 46 1181Google Scholar
[16] Li Z P, Huang X, Cao Y, Wang B, Li Y H, Jin W J, Yu C, Zhang J, Zhang Q, Peng C Z, Xu F H, Pan J W 2020 Photonics Res. 8 1532Google Scholar
[17] Li Z P, Huang X, Jiang P Y, Hong Y, YU C, Yu C, Zhang J, Xu F H, Pan J W 2020 Opt. Express 28 4076Google Scholar
[18] Chen S M, Halimi A, Ren X M, McCarthy A, Su X Q, Buller G S, McLaughlin S 2019 Proceedings of the 27th European Signal Processing Conference (EUSIPCO) A Coruna, Spain, September 2–6, 2019 p1
[19] Chen S M, Halimi A, Ren X M, McCarthy A, Su X Q, McLaughlin S, Buller G S 2020 IEEE Trans. Image. Process. 29 3119Google Scholar
[20] 汪书潮, 苏秀琴, 朱文华, 陈松懋, 张振扬, 徐伟豪, 王定杰 2021 物理学报 70 174304Google Scholar
Wang S C, Su X Q, Zhu W H, Chen S M, Zhang Z Y, Xu W H, Wang D J 2021 Acta Phys. Sin. 70 174304Google Scholar
[21] Sun Q L, Zhang J, Dun X, Ghanem B, Peng Y F, Heidrich W 2020 ACM Trans. Graph. 39 1Google Scholar
[22] Du B C, Pang C K, Wu D, Li Z H, Peng H, Tao Y L, Wu E, Wu G 2018 Sci. Rep. 8 4198Google Scholar
[23] 吴琛怡, 汪琳莉, 施皓天, 王煜蓉, 潘海峰, 李召辉, 吴光 2021 物理学报 70 174201Google Scholar
Wu C Y, Wang L L, Shi H T, Wang Y R, Pan H F, Li Z H, Wu G 2021 Acta Phys. Sin. 70 174201Google Scholar
[24] Zheng T X, Shen G Y, Li Z H, Yang L, Zhang H Y, Wu E, Wu G 2019 Photonics Res. 7 1381Google Scholar
[25] Li Z H, Wu E, Pang C K, Du B C, Tao Y L, Peng H, Zeng H P, Wu G 2017 Opt. Express 25 10189Google Scholar
[26] Wu D, Zheng T X, Wang L L, Chen X L, Yang L, Li Z H, Wu G 2022 Opt. Laser Technol. 145 107477Google Scholar
[27] Hua K J, Liu B, Chen Z, Wang H C, Fang L, Yun J 2021 IEEE Photonics J. 13 1Google Scholar
[28] Aspert N, Santa-Cruz D, Ebrahimi T 2002 Proceedings. IEEE International Conference on Multimedia and Expo Lausanne, Switzerland, August 26–29, 2002 p705
计量
- 文章访问数: 4275
- PDF下载量: 91
- 被引次数: 0