搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维系统研究中的无电极输运方法

赵利利 吴蒙蒙 林文璐 刘阳

引用本文:
Citation:

二维系统研究中的无电极输运方法

赵利利, 吴蒙蒙, 林文璐, 刘阳

Contactless transport method of two-dimensional electron system studies

Zhao Li-Li, Wu Meng-Meng, Lin Wen-Lu, Liu Yang
PDF
HTML
导出引用
  • 介绍了两种极低温环境下无接触电极输运的测量方法—电容测量和表面声波测量. 两种方法通过高频电场与电子的相互作用来研究量子系统体态的物理特性. 首先介绍了在极低温下通过高精度电容测量研究高质量二维电子气特性的初步结果. 实验装置具备在10 mK—300 K, 0—14 T环境中对小于1 pF的电容实现0.05%以上分辨率的能力. 还介绍了利用表面声波研究二维电子系统的结果, 可以在0.1 nW的输入激励下获得小于10–5的灵敏度. 这些测量手段在研究二维系统尤其是无法制作高质量接触电极的材料中具有广泛的应用前景.
    We introduce two contactless measurement methods at extremely low temperature: capacitances and surface acoustic waves. Both methods can be used to study the physical properties of the quantum system through the interaction between electrons and high frequency electric field. We first present preliminary results of high-mobility two-dimensional electron systems studied by a high-precision capacitance measurement method at extremely low temperature. Our setup can resolve < 0.05% variation of a < 1 pF capacitance at 10 mK–300 K and 0–14 T. Second, we also study two-dimensional electron systems using surface acoustic waves. We can use 0.1 nW excitation and obtain < 10–5 sensitivity. These measurement methods may be widely applied to the study of two-dimensional systems, especially the materials without high quality contacts.
      通信作者: 刘阳, liuyang02@pku.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFA0308403)和国家自然科学基金(批准号: 92065104, 12074010)资助的课题
      Corresponding author: Liu Yang, liuyang02@pku.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2019YFA0308403) and the National Natural Science Foundation of China (Grant Nos. 92065104, 12074010)
    [1]

    Chen Y, Lewis R M, Engel L W, Tsui D C, Ye P D, Pfeiffer L N, West K W 2003 Phys. Rev. Lett. 91 016801Google Scholar

    [2]

    Zudov M A, Du R R, Simmons J A, Reno J L 2001 Phys. Rev. B 64 201311Google Scholar

    [3]

    Ashoori R C, Stormer H L, Weiner J S, Pfeiffer L N, Pearton S J, Baldwin K W, West K W 1992 Phys. Rev. Lett. 68 3088Google Scholar

    [4]

    Kaplit M, Zemel J N 1968 Phys. Rev. Lett. 21 212Google Scholar

    [5]

    Voshchenkov A M, Zemel J N 1974 Phys. Rev. B 9 4410

    [6]

    Smith T P, Goldberg B B, Stiles P J, Heiblum M 1985 Phys. Rev. B 32 2696

    [7]

    Mosser V, Weiss D, Klitzing K, Ploog K, Weimann G 1986 Solid State Commun. 58 5Google Scholar

    [8]

    Smith T P, Wang W I, Stiles P J 1986 Phys. Rev. B 34 2995Google Scholar

    [9]

    Yang M J, Yang C H, Bennett B R, Shanabrook B V 1997 Phys. Rev. Lett. 78 4613Google Scholar

    [10]

    Eisenstein J P, Pfeiffer L N, West K W 1994 Phys. Rev. B 50 1760Google Scholar

    [11]

    Zibrov A A, Kometter C, Zhou H, Spanton E M, Taniguchi T, Watanabe K, Zaletel M P, Young A F 2017 Nature 549 360Google Scholar

    [12]

    Irie H, Akiho T, Muraki K 2019 Appl. Phys. Express 12 063004Google Scholar

    [13]

    Eisenstein J P, Pfeiffer L N, West K W 1992 Phys. Rev. Lett. 68 674Google Scholar

    [14]

    Deng H, Pfeiffer L N, West K W, Baldwin K W, Engel L W, Shayegan M 2019 Phys. Rev. Lett. 122 116601Google Scholar

    [15]

    Jo J, Garcia E A, Abkemeier K M, Santos M B, Shayegan M 1993 Phys. Rev. B 47 4056Google Scholar

    [16]

    Zibrov A A, Rao P, Kometter C, et al. 2018 Phys. Rev. Lett. 121 167601Google Scholar

    [17]

    Tomarken S L, Cao Y, Demir A, et al. 2019 Phys. Rev. Lett. 123 046601Google Scholar

    [18]

    Zhao L, Lin W, Fan X, Song Y, Lu H, Liu Y 2022 Rev. Sci. Instrum. 93 053910

    [19]

    Zhao L, Lin W, Chung Y J, Baldwin K W, Pfeiffer L N, Liu Y 2022 arXiv: 2201.06203 [cond-mat.mes-hall]

    [20]

    Verbiest G J, Janssen H, Xu D 2019 Rev. Sci. Instrum. 90 084706Google Scholar

    [21]

    Willett R L, Paalanen M A, Ruel R R, West K W, Pfeiffer L N, Bishop D J 1990 Phys. Rev. Lett. 65 112Google Scholar

    [22]

    Friess B, Peng Y, Rosenow B, von Oppen F, Umansky V, von Klitzing K, Smet J H 2017 Nat. Phys. 13 1124Google Scholar

  • 图 1  利用电容测量研究二维电子系统 (a) 测量使用的无源电桥和待测样品结构示意图; (b) 电桥输出随电阻臂电阻比例的变化; (c) 测量中使用的GaAs/AlGaAs异质结样品结构, 样品中包含两层二维电子气, 分别位于量子阱(QW)和缓冲层的异质结界面(HS)处; (d) 常规输运得到的纵向电阻$R_{xx}$(蓝色)、由电容测量方法得到的电容$C_{\text{DUT}}$(黑色)和电导$\sigma$(红色)随磁场变化的曲线; (e) 电容随顶栅栅压$V_{\text{FG}}$的变化展示了多平台结构, 分别对应于耗尽状态、异质结填充和量子阱填充的状态

    Fig. 1.  Studying the high-mobility two-dimensional electron gas via capacitance measurement: (a) Schematic diagram of passive bridge and sample geometry. (b) The bridge output varies with the resistance ratio of the resistance arm. (c) The GaAs/AlGaAs heterostructure. The sample contains two layers of two-dimensional electron gas, which locate at the heterojunction interface (HS) of the buffer layer and the quantum well (QW), respectively. (d) The longitudinal resistance $R_{xx}$ (blue) obtained by conventional transport measurement, the capacitance $C_{\text{DUT}}$(black) and the conductance $\sigma$(red) obtained by capacitance measurement. (e) The capacitance versus the top gate voltage $V_{\text{FG}}$ shows multi-plateau corresponding to the state of depletion, heterojunction filling and quantum well filling, respectively

    图 2  表面声波原理及测量结果 (a) 测量的样品结构, 通过湿法刻蚀去除叉指电极附近的二维电子气, 刻蚀深度足够浅而不会影响表面声波传播; (b) 利用光学方法测量得到的表面声波电极和表面声波强度分布; (c) 在17 mK测量得到的表面声波器件的幅频以及相频特性, 利用相频特性曲线斜率可以得到测量延迟并推导出声波波速约2800 m/s; (d) 表面声波测量得到的声波幅度和声速随磁场的变化. 在强磁场中, 当二维电子气出现量子霍尔效应时声波幅度增加, 波速会加快

    Fig. 2.  SAW measurement setup and results: (a) The sample structure. We remove the two-dimensional electron gas near the cross-finger electrodes by wet etching. The etching depth is shallow enough without affecting SAW propagation. (b) SAW intensity distribution measured by optical method. (c) Amplitude and phase of device measured at 17 mK. The SAW velocity is about 2800 m/s deduced from the slope of the phase vs. frequency dependence. (d) The amplitude and velocity of SAW measured with the magnetic field. At high magnetic field, the amplitude and the velocity of SAW increase when the quantum Hall effect occurs in the two-dimensional electron gas

  • [1]

    Chen Y, Lewis R M, Engel L W, Tsui D C, Ye P D, Pfeiffer L N, West K W 2003 Phys. Rev. Lett. 91 016801Google Scholar

    [2]

    Zudov M A, Du R R, Simmons J A, Reno J L 2001 Phys. Rev. B 64 201311Google Scholar

    [3]

    Ashoori R C, Stormer H L, Weiner J S, Pfeiffer L N, Pearton S J, Baldwin K W, West K W 1992 Phys. Rev. Lett. 68 3088Google Scholar

    [4]

    Kaplit M, Zemel J N 1968 Phys. Rev. Lett. 21 212Google Scholar

    [5]

    Voshchenkov A M, Zemel J N 1974 Phys. Rev. B 9 4410

    [6]

    Smith T P, Goldberg B B, Stiles P J, Heiblum M 1985 Phys. Rev. B 32 2696

    [7]

    Mosser V, Weiss D, Klitzing K, Ploog K, Weimann G 1986 Solid State Commun. 58 5Google Scholar

    [8]

    Smith T P, Wang W I, Stiles P J 1986 Phys. Rev. B 34 2995Google Scholar

    [9]

    Yang M J, Yang C H, Bennett B R, Shanabrook B V 1997 Phys. Rev. Lett. 78 4613Google Scholar

    [10]

    Eisenstein J P, Pfeiffer L N, West K W 1994 Phys. Rev. B 50 1760Google Scholar

    [11]

    Zibrov A A, Kometter C, Zhou H, Spanton E M, Taniguchi T, Watanabe K, Zaletel M P, Young A F 2017 Nature 549 360Google Scholar

    [12]

    Irie H, Akiho T, Muraki K 2019 Appl. Phys. Express 12 063004Google Scholar

    [13]

    Eisenstein J P, Pfeiffer L N, West K W 1992 Phys. Rev. Lett. 68 674Google Scholar

    [14]

    Deng H, Pfeiffer L N, West K W, Baldwin K W, Engel L W, Shayegan M 2019 Phys. Rev. Lett. 122 116601Google Scholar

    [15]

    Jo J, Garcia E A, Abkemeier K M, Santos M B, Shayegan M 1993 Phys. Rev. B 47 4056Google Scholar

    [16]

    Zibrov A A, Rao P, Kometter C, et al. 2018 Phys. Rev. Lett. 121 167601Google Scholar

    [17]

    Tomarken S L, Cao Y, Demir A, et al. 2019 Phys. Rev. Lett. 123 046601Google Scholar

    [18]

    Zhao L, Lin W, Fan X, Song Y, Lu H, Liu Y 2022 Rev. Sci. Instrum. 93 053910

    [19]

    Zhao L, Lin W, Chung Y J, Baldwin K W, Pfeiffer L N, Liu Y 2022 arXiv: 2201.06203 [cond-mat.mes-hall]

    [20]

    Verbiest G J, Janssen H, Xu D 2019 Rev. Sci. Instrum. 90 084706Google Scholar

    [21]

    Willett R L, Paalanen M A, Ruel R R, West K W, Pfeiffer L N, Bishop D J 1990 Phys. Rev. Lett. 65 112Google Scholar

    [22]

    Friess B, Peng Y, Rosenow B, von Oppen F, Umansky V, von Klitzing K, Smet J H 2017 Nat. Phys. 13 1124Google Scholar

  • [1] 张帅, 宋凤麒. 拓扑绝缘体中量子霍尔效应的研究进展. 物理学报, 2023, 72(17): 177302. doi: 10.7498/aps.72.20230698
    [2] 马嵩松, 舒天宇, 朱家旗, 李锴, 吴惠桢. Ⅳ-Ⅵ族化合物半导体异质结二维电子气研究进展. 物理学报, 2019, 68(16): 166801. doi: 10.7498/aps.68.20191074
    [3] 王一鹤, 张志旺, 程营, 刘晓峻. 声子晶体中的表面声波赝自旋模式和拓扑保护声传输. 物理学报, 2019, 68(22): 227805. doi: 10.7498/aps.68.20191363
    [4] 李春曦, 施智贤, 庄立宇, 叶学民. 活性剂对表面声波作用下薄液膜铺展的影响. 物理学报, 2019, 68(21): 214703. doi: 10.7498/aps.68.20190791
    [5] 钟青, 王雪深, 李劲劲, 鲁云峰, 李正坤, 王文新, 孙庆灵. 1 k量子霍尔阵列电阻标准器件研制. 物理学报, 2016, 65(22): 227301. doi: 10.7498/aps.65.227301
    [6] 王现彬, 赵正平, 冯志红. N极性GaN/AlGaN异质结二维电子气模拟. 物理学报, 2014, 63(8): 080202. doi: 10.7498/aps.63.080202
    [7] 吴传禄, 马颖, 蒋丽梅, 周益春, 李建成. 电离辐射环境下金属-铁电-绝缘体-基底结构铁电场效应晶体管电学性能的模拟. 物理学报, 2014, 63(21): 216102. doi: 10.7498/aps.63.216102
    [8] 张阳, 顾书林, 叶建东, 黄时敏, 顾然, 陈斌, 朱顺明, 郑有炓. ZnMgO/ZnO异质结构中二维电子气的研究. 物理学报, 2013, 62(15): 150202. doi: 10.7498/aps.62.150202
    [9] 王红培, 王广龙, 喻颖, 徐应强, 倪海桥, 牛智川, 高凤岐. 内嵌InAs量子点的δ掺杂GaAs/AlxGa1-xAs二维电子气特性分析. 物理学报, 2013, 62(20): 207303. doi: 10.7498/aps.62.207303
    [10] 王威, 周文政, 韦尚江, 李小娟, 常志刚, 林铁, 商丽燕, 韩奎, 段俊熙, 唐宁, 沈波, 褚君浩. GaN/AlxGa1-xN异质结二维电子气的磁电阻研究. 物理学报, 2012, 61(23): 237302. doi: 10.7498/aps.61.237302
    [11] 谭振兵, 马丽, 刘广同, 吕力, 杨昌黎. 石墨烯量子霍尔平台与平台之间转变的标度律关系. 物理学报, 2011, 60(10): 107204. doi: 10.7498/aps.60.107204
    [12] 商丽燕, 林 铁, 周文政, 黄志明, 李东临, 高宏玲, 崔利杰, 曾一平, 郭少令, 褚君浩. In0.53Ga0.47As/In0.52Al0.48As量子阱中双子带占据的二维电子气的输运特性. 物理学报, 2008, 57(4): 2481-2485. doi: 10.7498/aps.57.2481
    [13] 周忠堂, 郭丽伟, 邢志刚, 丁国建, 谭长林, 吕 力, 刘 建, 刘新宇, 贾海强, 陈 弘, 周均铭. AlGaN/AlN/GaN结构中二维电子气的输运特性. 物理学报, 2007, 56(10): 6013-6018. doi: 10.7498/aps.56.6013
    [14] 高宏玲, 李东临, 周文政, 商丽燕, 王宝强, 朱战平, 曾一平. 不同量子阱宽度的InP基In0.53GaAs/In0.52AlAs高电子迁移率晶体管材料二维电子气的性能研究. 物理学报, 2007, 56(8): 4955-4959. doi: 10.7498/aps.56.4955
    [15] 周文政, 林 铁, 商丽燕, 黄志明, 崔利杰, 李东临, 高宏玲, 曾一平, 郭少令, 桂永胜, 褚君浩. InAlAs/InGaAs/InAlAs量子阱高迁移率二维电子气系统中的反弱局域效应研究. 物理学报, 2007, 56(7): 4099-4104. doi: 10.7498/aps.56.4099
    [16] 朱 博, 桂永胜, 周文政, 商丽燕, 郭少令, 褚君浩, 吕 捷, 唐 宁, 沈 波, 张福甲. Al0.22Ga0.78N/GaN二维电子气中的弱局域和反弱局域效应. 物理学报, 2006, 55(5): 2498-2503. doi: 10.7498/aps.55.2498
    [17] 周文政, 姚 炜, 朱 博, 仇志军, 郭少令, 林 铁, 崔利杰, 桂永胜, 褚君浩. 单边掺杂InAlAs/InGaAs单量子阱中二维电子气的磁输运特性. 物理学报, 2006, 55(4): 2044-2048. doi: 10.7498/aps.55.2044
    [18] 舒 强, 舒永春, 张冠杰, 刘如彬, 姚江宏, 皮 彪, 邢晓东, 林耀望, 许京军, 王占国. 调制掺杂GaAs/AlGaAs 2DEG材料持久光电导及子带电子特性研究. 物理学报, 2006, 55(3): 1379-1383. doi: 10.7498/aps.55.1379
    [19] 高宏雷, 李 玲, 高 洁. 准一维电子通道中声电电流的理论计算. 物理学报, 2004, 53(10): 3504-3509. doi: 10.7498/aps.53.3504
    [20] 刘红侠, 郝 跃, 张 涛, 郑雪峰, 马晓华. AlGaAs/InGaAs/GaAs赝配高电子迁移晶体管的kink效应研究. 物理学报, 2003, 52(4): 984-988. doi: 10.7498/aps.52.984
计量
  • 文章访问数:  3694
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-08
  • 修回日期:  2022-03-15
  • 上网日期:  2022-06-02
  • 刊出日期:  2022-06-20

/

返回文章
返回