搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

增益开关线偏振单频脉冲光纤激光器

张万儒 陈思雨 粟荣涛 姜曼 李灿 马阎星 周朴

引用本文:
Citation:

增益开关线偏振单频脉冲光纤激光器

张万儒, 陈思雨, 粟荣涛, 姜曼, 李灿, 马阎星, 周朴

Gain switched linearly polarized single-frequency pulsed fiber laser

Zhang Wan-Ru, Chen Si-Yu, Su Rong-Tao, Jiang Man, Li Can, Ma Yan-Xing, Zhou Pu
PDF
HTML
导出引用
  • 报道了一台线偏振单频脉冲光纤激光器. 采用全保偏环形腔结构搭建全光纤振荡器, 在腔内熔接一段未抽运的保偏掺镱光纤作为饱和吸收体, 产生超窄带的动态光栅进行滤波选模, 实现了激光器的单频输出. 利用976 nm半导体激光器作为抽运源, 产生脉冲加连续的混合抽运激光, 实现了重频10—90 kHz、脉宽1—8 μs的长脉冲输出. 实验研究了抽运功率和重复频率等参数对输出激光的时域、频域和功率特性的影响. 实验发现输出激光的频域特性在一定功率范围内存在光学双稳态现象, 分析了激光功率特性对动态光栅选模机制的影响. 通过参数优化, 最终实现了中心波长1064 nm、线宽约23.5 MHz、重频10—90 kHz、脉宽4—8 μs、偏振消光比约29 dB的单频脉冲激光输出.
    Single-frequency pulsed fiber lasers have aroused intense interest due to their excellent performances in terms of good coherence, compact structure and good beam quality, which have been widely used in different areas, such as coherent LIDAR, nonlinear frequency conversion, and remote sensing. In this paper, a linearly polarized single-frequency pulsed fiber laser is reported. The narrow linewidth all-fiber oscillator is built by using an all-polarization-maintaining ring cavity structure. A section of unpumped polarization-maintaining ytterbium doped fiber is fused in the cavity as a saturated absorber to produce ultra-narrow bandwidth dynamic grating, which can be used for longitudinal mode selection. Thus, the laser can realize single-frequency operation. A 976-nm semiconductor laser is used as a pump source to generate a hybrid pump laser, which contains both pulsed component and continuous component. As a result, a long-pulse laser is achieved with a repetition rate of 10–90 kHz and a pulse duration of 1–8 μs. At the same time, the effects of pump power and repetition rate on the time domain, the frequency domain and the power characteristics of the output laser are investigated. It is found that there is an optical bistability in the frequency domain characteristic of the output laser within a certain power range. And the influence of the laser power characteristic on the longitudinal mode selection mechanism of dynamic grating is analyzed. Finally, through parameter optimization, single-frequency pulsed fiber laser is achieved with a center wavelength of 1064 nm, a linewidth of about 23.5 MHz, a repetition rate of 10–90 kHz, a pulse duration of 4–8 μs, and a polarization extinction ratio of about 29 dB.
      通信作者: 粟荣涛, surongtao@126.com
    • 基金项目: 国家自然科学基金(批准号: 62005316)和长沙市杰出创新青年培养计划(批准号: kq2106005)资助的课题.
      Corresponding author: Su Rong-Tao, surongtao@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62005316) and the Outstanding Innovative Youth Fostering Program of Changsha, China(Grant No. kq2106005)
    [1]

    Mo C, Chenyu W, Jianfei W, Hong L, Zhou M 2017 Optics Express 25 19216Google Scholar

    [2]

    Wan Y, Wen J, Jiang C, Tang F, Wen J, Huang S, Pang F, Wang T 2021 Photon. Res. 9 649Google Scholar

    [3]

    Guan X, Yang C, Tian Q, Wei L, Zhao Q, Tang G, Qian G, Qian Q, Yang Z, Xu S 2018 Optics Express 26 6817Google Scholar

    [4]

    Wang K, Wen Z, Chen H, Lu B, Bai J 2021 Optics Lett. 46 404Google Scholar

    [5]

    Shi W, Leigh M, Zong J, Jiang S 2007 Optics Lett. 32 949Google Scholar

    [6]

    Liu Y, Liu J, Chen W 2011 Chin. Optics Lett. 9 18Google Scholar

    [7]

    Shi W, Petersen E, Moor N, Chavez-Pirson A, Peyghambarian N 2011 Conference on Nanophotonics and Macrophotonics for Space Environments V 2011

    [8]

    Su R, Zhou P, Xiao H, Wang X, Xu X 2012 Appl. Optics 51 3655Google Scholar

    [9]

    He J, Lin D, Xu L, Beresna M, Zervas M N, Alam S-u, Brambilla G 2018 Optics Express 26 6554Google Scholar

    [10]

    Lee W, Geng J, Jiang S, Yu A W 2018 Optics Lett. 43 2264Google Scholar

    [11]

    Shi C, Tian H, Sheng Q, Shi W, Fang Q, Sun S, Zhang J, Deng X, Yao J 2021 Results in Phys. 28 104594Google Scholar

    [12]

    Shi W, Petersen E B, Moor N, Chavez-Pirson A, Peyghambarian N 2011 CLEO: 2011-Laser Applications to Photonic Applications Baltimore, Maryland, May 1, 2011 pCThDD6

    [13]

    Zhang Y, Wang S, Lin W, Mo S, Zhao Q, Yang C, Feng Z, Deng H, Peng M, Yang Z, Xu S 2017 Appl. Phys. Express 10 052502Google Scholar

    [14]

    Li W, Zou J, Huang Y, Wang K, Du T, Jiang S, Luo Z 2018 Photon. Res. 6 35Google Scholar

    [15]

    Zhao Q, Wu Z, Zhang Z, Lin W, Li C, Guan X, Tan T, Yang C, Cheng H, Gan J, Feng Z, Peng M, Yang Z, Xu S 2018 Optics Express 26 17000Google Scholar

    [16]

    Zhou R, Shi W, Petersen E, Chavez-Pirson A, Stephen M, Peyghambarian N 2012 J. Lightwave Technol. 30 2589Google Scholar

    [17]

    Li W, Liu H, Zhang J, Long H, Feng S, Mao Q 2016 Applied Optics 55 4584Google Scholar

    [18]

    Zhang Y, Yang C, Li C, Feng Z, Xu S, Deng H, Yang Z 2016 Optics Express 24 3162Google Scholar

    [19]

    Li W, Liu H, Zhang J, Yao B, Feng S, Wei L, Mao Q 2017 IEEE Photon. J. 9 1Google Scholar

    [20]

    Wang W, Qi H, Song Z, Guo J, Ni J, Wang C, Peng G 2020 Opt. Commun. 467 125747Google Scholar

    [21]

    Geng J, Wang Q, Luo T, Case B, Jiang S, Amzajerdian F, Yu J 2012 Optics Lett. 37 3795Google Scholar

    [22]

    Hou Y, Zhang Q, Qi S, Feng X, Wang P 2016 Optics Express 24 28761Google Scholar

    [23]

    Poozesh R, Madanipour K, Parvin P 2019 Optics Lett. 44 122Google Scholar

    [24]

    Fang S, Zhang Z, Yang C, Lin W, Cen X, Zhao Q, Feng Z, Yang Z, Xu S 2022 IEEE Photon. Technol. Lett. 34 255Google Scholar

    [25]

    Fei W, Deyuan S, Hao C, Dianyuan F, Qisheng L 2011 Optical Rev. 18 360Google Scholar

    [26]

    栾昆鹏, 沈炎龙, 陶蒙蒙, 朱峰, 黄超, 谌鸿伟, 易爱平 2019 光学学报 39 9Google Scholar

    Luan K P, Shen Y L, Tao M M, Zhu F, Huang C, Chen H W, Yi A P 2019 Acta Optica Sin. 39 9Google Scholar

    [27]

    Larsen C, Hansen K P, Mattsson K E, Bang O 2014 Optics Express 22 1490Google Scholar

    [28]

    Li Y, Huang L, Gao L, Lan T, Cao Y, Ikechukwu I P, Shi L, Liu Y, Li F, Zhu T 2018 Optics Express 26 26896Google Scholar

    [29]

    白燕, 延凤平, 冯亭, 韩文国, 张鲁娜, 程丹, 白卓娅, 温晓东 2019 中国激光 46 64Google Scholar

    Bai Y, Yan F P, Feng T, Han W G, Zhang L N, Cheng D, Bai Z Y, Wen X D 2019 Chin. J. Lasers 46 64Google Scholar

    [30]

    Zhang J, Sheng Q, Zhang L, Shi C, Sun S, Bai X, Shi W, Yao J 2021 Optics Express 29 21409Google Scholar

    [31]

    Stepanov S, Fotiadi A A, Mégret P 2007 Optics Express 15 8832Google Scholar

    [32]

    Pal D, Paul A, Chowdhury S D, Pal M, Sen R, Pal A 2018 Appl. Optics 57 3546Google Scholar

    [33]

    Yin T, Song Y, Jiang X, Chen F, He S 2019 Optics Express 27 15794Google Scholar

  • 图 1  增益开关单频脉冲光纤激光器结构示意图

    Fig. 1.  Experiment setup of the gain-switched single-frequency pulsed fiber laser.

    图 2  脉冲时域特性随抽运激光特性的变化情况 (a) 抽运平均功率53 mW、抽运脉宽3 μs; (b) 抽运平均功率137 mW、抽运脉宽3 μs; (c) 抽运平均功率154 mW、抽运脉宽3 μs; (d) 抽运平均功率137 mW、抽运脉宽5 μs

    Fig. 2.  Pulse time domain characteristics with different pump characteristics, the average pump power and pump pulse duration are: (a) 53 mW, 3 μs; (b) 137 mW, 3 μs; (c) 154 mW, 3 μs; (d) 137 mW, 5 μs.

    图 3  脉冲时域特性随抽运激光重频的变化情况 (a) 脉冲序列; (b) 脉冲波形

    Fig. 3.  Pulse time domain characteristics with different pump repetition rate: (a) Pulse trains; (b) pulse waveform.

    图 4  激光器的典型频域特性 (a) 不熔接PM-YDF2时的纵模特性; (b) 熔接1 m长PM-YDF2时的纵模特性; (c) 单纵模线宽; (d) 光谱特性

    Fig. 4.  Typical frequency domain characteristics of laser: (a) longitudinal mode characteristic without PM-YDF2; (b) longitudinal mode characteristic with 1-m-long PM-YDF2; (c) linewidth of single-longitudinal-mode; (d) optical spectrum characteristic.

    图 5  激光器纵模特性随抽运功率的演化过程

    Fig. 5.  Evolution of laser longitudinal mode characteristic with pump power.

    图 6  典型抽运功率下的(a)脉冲波形与(b)纵模特性

    Fig. 6.  (a) Pulse waveform and (b) longitudinal mode characteristic with typical pump power.

    图 7  抽运重频分别为 (a) 20 kHz, (b) 40 kHz, (c) 60 kHz时激光器输出功率随抽运功率的变化

    Fig. 7.  Output power of the laser versus pump power with pump repetition rates of (a) 20 kHz, (b) 40 kHz, (c) 60 kHz, respectively

  • [1]

    Mo C, Chenyu W, Jianfei W, Hong L, Zhou M 2017 Optics Express 25 19216Google Scholar

    [2]

    Wan Y, Wen J, Jiang C, Tang F, Wen J, Huang S, Pang F, Wang T 2021 Photon. Res. 9 649Google Scholar

    [3]

    Guan X, Yang C, Tian Q, Wei L, Zhao Q, Tang G, Qian G, Qian Q, Yang Z, Xu S 2018 Optics Express 26 6817Google Scholar

    [4]

    Wang K, Wen Z, Chen H, Lu B, Bai J 2021 Optics Lett. 46 404Google Scholar

    [5]

    Shi W, Leigh M, Zong J, Jiang S 2007 Optics Lett. 32 949Google Scholar

    [6]

    Liu Y, Liu J, Chen W 2011 Chin. Optics Lett. 9 18Google Scholar

    [7]

    Shi W, Petersen E, Moor N, Chavez-Pirson A, Peyghambarian N 2011 Conference on Nanophotonics and Macrophotonics for Space Environments V 2011

    [8]

    Su R, Zhou P, Xiao H, Wang X, Xu X 2012 Appl. Optics 51 3655Google Scholar

    [9]

    He J, Lin D, Xu L, Beresna M, Zervas M N, Alam S-u, Brambilla G 2018 Optics Express 26 6554Google Scholar

    [10]

    Lee W, Geng J, Jiang S, Yu A W 2018 Optics Lett. 43 2264Google Scholar

    [11]

    Shi C, Tian H, Sheng Q, Shi W, Fang Q, Sun S, Zhang J, Deng X, Yao J 2021 Results in Phys. 28 104594Google Scholar

    [12]

    Shi W, Petersen E B, Moor N, Chavez-Pirson A, Peyghambarian N 2011 CLEO: 2011-Laser Applications to Photonic Applications Baltimore, Maryland, May 1, 2011 pCThDD6

    [13]

    Zhang Y, Wang S, Lin W, Mo S, Zhao Q, Yang C, Feng Z, Deng H, Peng M, Yang Z, Xu S 2017 Appl. Phys. Express 10 052502Google Scholar

    [14]

    Li W, Zou J, Huang Y, Wang K, Du T, Jiang S, Luo Z 2018 Photon. Res. 6 35Google Scholar

    [15]

    Zhao Q, Wu Z, Zhang Z, Lin W, Li C, Guan X, Tan T, Yang C, Cheng H, Gan J, Feng Z, Peng M, Yang Z, Xu S 2018 Optics Express 26 17000Google Scholar

    [16]

    Zhou R, Shi W, Petersen E, Chavez-Pirson A, Stephen M, Peyghambarian N 2012 J. Lightwave Technol. 30 2589Google Scholar

    [17]

    Li W, Liu H, Zhang J, Long H, Feng S, Mao Q 2016 Applied Optics 55 4584Google Scholar

    [18]

    Zhang Y, Yang C, Li C, Feng Z, Xu S, Deng H, Yang Z 2016 Optics Express 24 3162Google Scholar

    [19]

    Li W, Liu H, Zhang J, Yao B, Feng S, Wei L, Mao Q 2017 IEEE Photon. J. 9 1Google Scholar

    [20]

    Wang W, Qi H, Song Z, Guo J, Ni J, Wang C, Peng G 2020 Opt. Commun. 467 125747Google Scholar

    [21]

    Geng J, Wang Q, Luo T, Case B, Jiang S, Amzajerdian F, Yu J 2012 Optics Lett. 37 3795Google Scholar

    [22]

    Hou Y, Zhang Q, Qi S, Feng X, Wang P 2016 Optics Express 24 28761Google Scholar

    [23]

    Poozesh R, Madanipour K, Parvin P 2019 Optics Lett. 44 122Google Scholar

    [24]

    Fang S, Zhang Z, Yang C, Lin W, Cen X, Zhao Q, Feng Z, Yang Z, Xu S 2022 IEEE Photon. Technol. Lett. 34 255Google Scholar

    [25]

    Fei W, Deyuan S, Hao C, Dianyuan F, Qisheng L 2011 Optical Rev. 18 360Google Scholar

    [26]

    栾昆鹏, 沈炎龙, 陶蒙蒙, 朱峰, 黄超, 谌鸿伟, 易爱平 2019 光学学报 39 9Google Scholar

    Luan K P, Shen Y L, Tao M M, Zhu F, Huang C, Chen H W, Yi A P 2019 Acta Optica Sin. 39 9Google Scholar

    [27]

    Larsen C, Hansen K P, Mattsson K E, Bang O 2014 Optics Express 22 1490Google Scholar

    [28]

    Li Y, Huang L, Gao L, Lan T, Cao Y, Ikechukwu I P, Shi L, Liu Y, Li F, Zhu T 2018 Optics Express 26 26896Google Scholar

    [29]

    白燕, 延凤平, 冯亭, 韩文国, 张鲁娜, 程丹, 白卓娅, 温晓东 2019 中国激光 46 64Google Scholar

    Bai Y, Yan F P, Feng T, Han W G, Zhang L N, Cheng D, Bai Z Y, Wen X D 2019 Chin. J. Lasers 46 64Google Scholar

    [30]

    Zhang J, Sheng Q, Zhang L, Shi C, Sun S, Bai X, Shi W, Yao J 2021 Optics Express 29 21409Google Scholar

    [31]

    Stepanov S, Fotiadi A A, Mégret P 2007 Optics Express 15 8832Google Scholar

    [32]

    Pal D, Paul A, Chowdhury S D, Pal M, Sen R, Pal A 2018 Appl. Optics 57 3546Google Scholar

    [33]

    Yin T, Song Y, Jiang X, Chen F, He S 2019 Optics Express 27 15794Google Scholar

  • [1] 丁欣怡, 王力, 曾令筏, 吴函烁, 王小林, 宁禹, 习锋杰. 双端输出近单模准连续全光纤激光器. 物理学报, 2023, 72(15): 154205. doi: 10.7498/aps.72.20230616
    [2] 张雨秋, 黄良金, 常琦, 安毅, 马鹏飞, 冷进勇, 周朴. 光纤激光基模光束的${\boldsymbol{\beta}}$因子. 物理学报, 2021, 70(20): 204203. doi: 10.7498/aps.70.20210281
    [3] 王井上, 张瑶, 王军利, 魏志义, 常国庆. 飞秒光纤激光相干合成技术最新进展. 物理学报, 2021, 70(3): 034206. doi: 10.7498/aps.70.20201683
    [4] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器. 物理学报, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [5] 刘向远, 钱仙妹, 朱文越, 刘丹丹, 范传宇, 周军, 杨欢. 基于波长330 nm激光激发多色激光导星回波光子数的数值计算与探讨. 物理学报, 2018, 67(1): 014205. doi: 10.7498/aps.67.20171025
    [6] 粟荣涛, 肖虎, 周朴, 王小林, 马阎星, 段磊, 吕品, 许晓军. 窄线宽脉冲光纤激光的自相位调制预补偿研究. 物理学报, 2018, 67(16): 164201. doi: 10.7498/aps.67.20180486
    [7] 杨宏志, 赵长明, 张海洋, 杨苏辉, 李晨. 基于频移反馈腔的全光纤射频调制脉冲激光研究. 物理学报, 2017, 66(18): 184201. doi: 10.7498/aps.66.184201
    [8] 张伟, 石震武, 霍大云, 郭小祥, 彭长四. 脉冲激光原位辐照对InAs/GaAs(001)量子点生长的影响. 物理学报, 2016, 65(11): 117801. doi: 10.7498/aps.65.117801
    [9] 韩舸, 龚威, 马昕, 相成志, 梁艾琳, 郑玉新. 地基CO2廓线探测差分吸收激光雷达. 物理学报, 2015, 64(24): 244206. doi: 10.7498/aps.64.244206
    [10] 李时春, 陈根余, 周聪, 陈晓锋, 周宇. 万瓦级光纤激光焊接过程中小孔内外等离子体研究. 物理学报, 2014, 63(10): 104212. doi: 10.7498/aps.63.104212
    [11] 粟荣涛, 周朴, 王小林, 冀翔, 许晓军. 不同波形脉冲激光的时域误差对相干合成的影响. 物理学报, 2012, 61(8): 084206. doi: 10.7498/aps.61.084206
    [12] 杜文博, 冷进勇, 朱家健, 周朴, 许晓军, 舒柏宏. 增益竞争双波长放大单频光纤放大器理论研究. 物理学报, 2012, 61(11): 114203. doi: 10.7498/aps.61.114203
    [13] 王小林, 周朴, 马阎星, 马浩统, 李霄, 许晓军, 赵伊君. 基于相位调制-解调的光纤激光相位噪声检测方法研究. 物理学报, 2011, 60(8): 084203. doi: 10.7498/aps.60.084203
    [14] 耿超, 李新阳, 张小军, 饶长辉. 倾斜相差对光纤激光相干合成的影响与模拟校正. 物理学报, 2011, 60(11): 114202. doi: 10.7498/aps.60.114202
    [15] 王小林, 周朴, 马阎星, 马浩统, 许晓军, 刘泽金, 赵伊君. 基于随机并行梯度下降算法的多波长激光相干合成. 物理学报, 2010, 59(8): 5474-5478. doi: 10.7498/aps.59.5474
    [16] 王小林, 周朴, 马阎星, 马浩统, 许晓军, 刘泽金, 赵伊君. 基于随机并行梯度下降算法光纤激光相干合成的高精度相位控制系统. 物理学报, 2010, 59(2): 973-979. doi: 10.7498/aps.59.973
    [17] 彭亚晶, 刘玉强, 王英惠, 张淑平, 杨延强. 皮秒和纳秒单脉冲激光加热Al/NC复合纳米含能材料的热动力学分析. 物理学报, 2009, 58(1): 655-661. doi: 10.7498/aps.58.655
    [18] 谢仕永, 鲁远甫, 薄勇, 崔前进, 徐一汀, 许家林, 彭钦军, 崔大复, 许祖彦. 高功率可调谐1064 nm准连续单频激光振荡-放大系统研究. 物理学报, 2009, 58(7): 4659-4663. doi: 10.7498/aps.58.4659
    [19] 张端明, 侯思普, 关 丽, 钟志成, 李智华, 杨凤霞, 郑克玉. 脉冲激光制备薄膜材料的烧蚀机理. 物理学报, 2004, 53(7): 2237-2243. doi: 10.7498/aps.53.2237
    [20] 张端明, 李智华, 黄明涛, 张美军, 关丽, 邹明清, 钟志成. 脉冲激光烧蚀块状靶材的双动态界面研究. 物理学报, 2001, 50(5): 914-920. doi: 10.7498/aps.50.914
计量
  • 文章访问数:  5185
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-27
  • 修回日期:  2022-05-17
  • 上网日期:  2022-09-30
  • 刊出日期:  2022-10-05

/

返回文章
返回