搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于离子化合物的高性能钙钛矿发光二极管

黄鑫梅 何晓莉 徐强 陈平 张勇 高春红

引用本文:
Citation:

基于离子化合物的高性能钙钛矿发光二极管

黄鑫梅, 何晓莉, 徐强, 陈平, 张勇, 高春红

Ionic-compound based high performance perovskite light emitting diodes

Huang Xin-Mei, He Xiao-Li, Xu Qiang, Chen Ping, Zhang Yong, Gao Chun-Hong
PDF
HTML
导出引用
  • 金属卤化物钙钛矿因其颜色可调、颜色纯度高、光电性能好而备受关注, 因而广泛应用于显示、照明等领域. 近年来, 对于钙钛矿发光二极管(perovskite light emitting doides, PeLEDs)的研究也越来越热门, 要获得高性能PeLEDs, 其发光层-钙钛矿薄膜的质量是关键因素之一. 本工作采用离子化合物四苯基氯化膦(tetraphenylphosphinium chloride, TPPCl)作准二维钙钛矿薄膜的添加剂, 制作了具有双电子传输层的高性能准二维PeLEDs. 其最佳器件的最大亮度(25285 cd/m2)、最大电流效率(65.9 cd/A)和最大外量子效率(17.3%)分别是控制器件的4.1, 7.2和7.2倍. 通过对其光电性能提高的物理机理进行研究, 发现TPPCl的引入不仅可以提高钙钛矿薄膜的质量, 减少缺陷, 还可以调节结晶相的分布, 从而更好地将激子限制在发光层中, 最终在能量漏斗效应的辅助下获得更好的光致发光和电致发光性能 .
    Metal halide perovskite has attracted much attention due to its adjustable color, high color purity, and excellent photoelectric properties. The quality of the perovskite film is one of the key factors that affect the performance of device. Here, PEA2Csn–1PbnBr3n+1 thin films are prepared by directly doping the ionic compound additive tetraphenylphosphine chloride (TPPCl) into the perovskite precursor of the light-emitting layer based on additive assisted technology. High-quality perovskite films with uniform, less pinholes and smaller grains are obtained. Not only is the photoluminescence (PL) performance of PeLEDs improved but the electroluminescence (EL) performance of PeLEDs with a double electron transport layer also turns better. The maximum brightness is 25285 cd/m2. The maximum current efficiency is 65.9 cd/A. And the maximum EQE is 17.3%. The method of adding ionic compounds to the perovskite precursor can not only improve the carrier transport behavior, but also make the formed small n crystal phases and large n crystal phase more balance, leading to the energy funnel effect to be enhanced. Further investigation by FTIR proves that the TPPCl can passivate the perovskite film, and thus greatly improving the EQE value of the PeLED. This researchpresents a simple and efficient method of developing high-performance quasi-two-dimensional green PeLEDs.
      通信作者: 高春红, gch0122@swu.edu.cn
    • 基金项目: 国家留学基金资助出国西部地区人才培养特别项目(批准号: 留金项[2018]10006号)和中央高校基本科研业务费(批准号: XDJK2018C082)资助的课题.
      Corresponding author: Gao Chun-Hong, gch0122@swu.edu.cn
    • Funds: Project supported by the Special Program for Talent Training in West China Funded by National Study Abroad Fund, China (Grant No. [2018]10006) and the Fundamental Research Funds for the Central Universities (Grant No. XDJK2018C082).
    [1]

    Cheng L, Jiang T, Cao Y, Yi C, Wang N, Huang W, Wang J 2020 Adv. Mater. 32 1904163Google Scholar

    [2]

    Kim Y H, Cho H, Lee T W 2016 Proc. Natl. Acad. Sci. U. S. A. 113 11694Google Scholar

    [3]

    瞿子涵, 储泽马, 张兴旺, 游经碧 2019 物理学报 68 158504Google Scholar

    Qu Z H, Chu Z M, Zhang X W, You J B 2019 Acta Phys. Sin. 68 158504Google Scholar

    [4]

    Gao X, Zhang X, Yin W, Wang H, Hu Y, Zhang Q, Shi Z, Colvin V L, Yu W W, Zhang Y 2019 Adv. Sci. 6 1900941Google Scholar

    [5]

    Kim Y H, Kim S, Jo S H, Lee T W 2018 Small Methods 2 1800093Google Scholar

    [6]

    Zhou Y Y, Zhao Y X 2019 Energy Environ. Sci. 12 1495Google Scholar

    [7]

    王润, 贾亚兰, 张月, 马兴娟, 徐强, 朱志新, 邓艳红, 熊祖洪, 高春红 2020 物理学报 69 038501Google Scholar

    Wang R, Jia Y L, Zhang Y, Ma X J, Xu Q, Zhu Z X, Deng Y H, Xiong Z H, Gao C H 2020 Acta. Phys. Sin. 69 038501Google Scholar

    [8]

    Era M, Morimoto S, Tsutsui T, Saito S 1994 Appl. Phys. Lett. 65 676Google Scholar

    [9]

    Tan Z K, Moghaddam R S, Lai M L, et al. 2014 Nat. Nanotechnol. 9 687Google Scholar

    [10]

    Jiang Y, Wei J, Yuan M 2021 J. Phys. Chem. Lett. 12 2593Google Scholar

    [11]

    Zhang L, Sun C, He T, Jiang Y, Wei J, Huang Y, Yuan M 2021 Light Sci. Appl. 10 61Google Scholar

    [12]

    Chu Z, Ye Q, Zhao Y, Ma F, Yin Z, Zhang X, You J 2021 Adv. Mater. 33 2007169Google Scholar

    [13]

    Liu Z, Qiu W, Peng X, Sun G, Liu X, Liu D, Li Z, He F, Shen C, Gu Q, Ma F, Yip H L, Hou L, Qi Z, Su S J 2021 Adv. Mater. 33 2103268Google Scholar

    [14]

    Wang R, Zhang Y, Ma X J, Deng Y H, Shi J W, Wang X C, Jia Y L, Xu Q, Xiong Z H, Gao C H 2020 J. Mater. Chem. C 8 9845Google Scholar

    [15]

    Kim Y H, Kim S, Kakekhani A, et al. 2021 Nat. Photonics 15 148Google Scholar

    [16]

    Xu Q, Wang R, Jia Y L, He X L, Deng Y H, Yu F X, Zhang Y, Ma X J, Chen P, Zhang Y, Xiong Z H, Gao C H 2021 Org. Electron. 98 106295Google Scholar

    [17]

    Kim B W, Heo J H, Park J K, Lee D S, Park H, Kim S Y, Kim J H, Im S H 2021 J. Ind. Eng. Chem. 97 417Google Scholar

    [18]

    Cheng T, Qin C J, Watanabe S, Matsushima T, Adachi C 2020 Adv. Funct. Mater. 30 2001816Google Scholar

    [19]

    Zhao B, Lian Y, Cui L, et al. 2020 Nat. Electron. 3 704Google Scholar

    [20]

    Li T, Xiang T, Wang M S, Zhang W, Shi J S, Shao M, Xu T F, Ahmadi M, Wu X Y, Gao Z, Xu L, Chen P 2021 Laser Photonics Rev. 15 2000495Google Scholar

    [21]

    Shi D, Adinolfi V, Comin R, et al. 2015 Science 347 519Google Scholar

    [22]

    Li W J, Lynch V, Thompson H, Fox M A 1997 J. Am. Chem. Soc. 119 7211Google Scholar

    [23]

    Gao C H, Cai S D, Gu W, Zhou D Y, Wang Z K, Liao L S 2012 ACS Appl. Mater Interfaces 4 5211Google Scholar

    [24]

    Gao C H, Yu F X, Xiong Z Y, Dong Y J, Ma X J, Zhang Y, Jia Y L, Wang R, Chen P, Zhou D Y, Xiong Z H 2019 Org. Electron. 70 264Google Scholar

    [25]

    Jia Y L, Wang R, Zhang Y, Ma X J, Yu F X, Xiong Z Y, Zhou D Y, Xiong Z H, Gao C H 2019 J. Lumin. 209 251Google Scholar

  • 图 1  不含/含TPPCl钙钛矿薄膜的光学性质 (a) XRD图谱, TPPCl的化学分子结构和相应的三维图; (b) 紫外-可见吸收光谱; (c) 归一化光致发光强度光谱, 及部分放大图(左)和荧光照片(右); (d) 时间分辨光致发光光谱

    Fig. 1.  Optical properties of perovskite films w/o TPPCl and with TPPCl: (a) XRD patterns, the chemical molecule structure of TPPCl and the corresponding 3D diagram; (b) UV-vis absorption spectra; (c) normalized PL intensity spectra, partial enlarged image (left) and fluorescence photo (right); (d) TRPL spectra.

    图 2  (a) PEA2Csn–1PbnBr3n+1, TPPCl、含TPPCl的PEA2Csn–1PbnBr3n+1的傅里叶变换红外光谱; (b) 不含/含TPPCl的钙钛矿薄膜在不同激光强度下的PLQY

    Fig. 2.  (a) FTIR spectra of PEA2Csn–1PbnBr3n+1, TPPCl, PEA2Csn–1PbnBr3n+1 with TPPCl; (b) PLQY of perovskite films w/o and with TPPCl under different laser intensities.

    图 3  (a), (b) 不含TPPCl和含TPPCl钙钛矿薄膜的顶部SEM图像, 红色圈标记的是孔洞; (c) 钙钛矿发光二极管的器件结构示意图; (d) 器件C的SEM剖面图

    Fig. 3.  (a), (b) The top-view SEM image of perovskite films w/o TPPCl and with TPPCl. The pinholes are circled in red; (c) the structure sketch map of quasi-2D PeLEDs; (d) the cross-sectional SEM images of device C.

    图 4  不同浓度TPPCl的准二维PeLEDs的EL性能 (a) 电流密度-电压; (b) 亮度-电压; (c) 电流效率-电压-外部量子效率; (d) 在6 V下的归一化EL光谱

    Fig. 4.  EL performance of all the PeLEDs with different concentration of TPPCl: (a) Current density-voltage (J-V); (b) luminance-voltage (L-V); (c) current efficiency-voltage-external quantum efficiency (CE-V-EQE); (d) normalized EL spectra under an applied voltage of 6 V.

    图 5  器件A和器件C的工作稳定性

    Fig. 5.  Working stability of device A and device C.

    图 6  (a) 电子主导器件EDD 1和EDD 2的电流密度-电压曲线图; (b) 空穴主导器件HDD 1和HDD 2的电流密度-电压曲线图

    Fig. 6.  (a) J-V curves of electron dominated devices EDD 1 and EDD 2; (b) J-V curves of hole dominant devices HDD 1 and HDD 2

    图 7  器件A (不含TPPCl) (a)和器件C (TPPCl浓度为2 mg/mL) (b)的电致发光机理图

    Fig. 7.  The diagram of EL mechanism of device A (without TPPCl) (a) and device C (with TPPCl of 2 mg/mL)(b).

    表 1  不含/含TPPCl钙钛矿薄膜的TRPL拟合参数

    Table 1.  Summary of TRPL fitting parameters for perovskite films w/o TPPCl and with TPPCl.

    Perovskite films$ {\tau _1} $/nsA1$ {\tau _2} $/nsA2$ {\tau _3} $/nsA3${\tau _{\rm ave} }$/ns
    w/o TPPCl1.441±
    0.020
    0.492±
    0.001
    0.422±
    0.004
    1.050±
    0.001
    7.109±
    0.001
    0.069±
    0.001
    1.020±
    0.001
    with TPPCl4.677±
    0.080
    0.394±
    0.001
    1.027±
    0.008
    2.705±
    0.001
    25.007±
    0.710
    0.048±
    0.001
    1.849±
    0.001
    下载: 导出CSV

    表 2  不同浓度TPPCl的准二维PeLEDs的EL性能的参数

    Table 2.  Summary of EL performance parameters of quasi-2D PeLEDs with different TPPCl concentrations.

    TPPCl
    /(mg·mL–1) a
    Vturn on
    /(V) b
    Lmax
    /(cd·m–2) c
    CEmax
    /(cd·A–1) d
    EQEmax
    /% e
    FWHM
    /nm f
    03.862129.22.418
    13.61650232.98.718
    23.22528565.917.318
    43.21378542.411.218
    注: a钙钛矿薄膜中TPPCl的掺杂浓度; b器件亮度为1 cd/m2时的开启电压; c最大亮度; d最大电流效率; e最大外部量子效率; f 6 V电压下的半峰全宽.
    下载: 导出CSV
  • [1]

    Cheng L, Jiang T, Cao Y, Yi C, Wang N, Huang W, Wang J 2020 Adv. Mater. 32 1904163Google Scholar

    [2]

    Kim Y H, Cho H, Lee T W 2016 Proc. Natl. Acad. Sci. U. S. A. 113 11694Google Scholar

    [3]

    瞿子涵, 储泽马, 张兴旺, 游经碧 2019 物理学报 68 158504Google Scholar

    Qu Z H, Chu Z M, Zhang X W, You J B 2019 Acta Phys. Sin. 68 158504Google Scholar

    [4]

    Gao X, Zhang X, Yin W, Wang H, Hu Y, Zhang Q, Shi Z, Colvin V L, Yu W W, Zhang Y 2019 Adv. Sci. 6 1900941Google Scholar

    [5]

    Kim Y H, Kim S, Jo S H, Lee T W 2018 Small Methods 2 1800093Google Scholar

    [6]

    Zhou Y Y, Zhao Y X 2019 Energy Environ. Sci. 12 1495Google Scholar

    [7]

    王润, 贾亚兰, 张月, 马兴娟, 徐强, 朱志新, 邓艳红, 熊祖洪, 高春红 2020 物理学报 69 038501Google Scholar

    Wang R, Jia Y L, Zhang Y, Ma X J, Xu Q, Zhu Z X, Deng Y H, Xiong Z H, Gao C H 2020 Acta. Phys. Sin. 69 038501Google Scholar

    [8]

    Era M, Morimoto S, Tsutsui T, Saito S 1994 Appl. Phys. Lett. 65 676Google Scholar

    [9]

    Tan Z K, Moghaddam R S, Lai M L, et al. 2014 Nat. Nanotechnol. 9 687Google Scholar

    [10]

    Jiang Y, Wei J, Yuan M 2021 J. Phys. Chem. Lett. 12 2593Google Scholar

    [11]

    Zhang L, Sun C, He T, Jiang Y, Wei J, Huang Y, Yuan M 2021 Light Sci. Appl. 10 61Google Scholar

    [12]

    Chu Z, Ye Q, Zhao Y, Ma F, Yin Z, Zhang X, You J 2021 Adv. Mater. 33 2007169Google Scholar

    [13]

    Liu Z, Qiu W, Peng X, Sun G, Liu X, Liu D, Li Z, He F, Shen C, Gu Q, Ma F, Yip H L, Hou L, Qi Z, Su S J 2021 Adv. Mater. 33 2103268Google Scholar

    [14]

    Wang R, Zhang Y, Ma X J, Deng Y H, Shi J W, Wang X C, Jia Y L, Xu Q, Xiong Z H, Gao C H 2020 J. Mater. Chem. C 8 9845Google Scholar

    [15]

    Kim Y H, Kim S, Kakekhani A, et al. 2021 Nat. Photonics 15 148Google Scholar

    [16]

    Xu Q, Wang R, Jia Y L, He X L, Deng Y H, Yu F X, Zhang Y, Ma X J, Chen P, Zhang Y, Xiong Z H, Gao C H 2021 Org. Electron. 98 106295Google Scholar

    [17]

    Kim B W, Heo J H, Park J K, Lee D S, Park H, Kim S Y, Kim J H, Im S H 2021 J. Ind. Eng. Chem. 97 417Google Scholar

    [18]

    Cheng T, Qin C J, Watanabe S, Matsushima T, Adachi C 2020 Adv. Funct. Mater. 30 2001816Google Scholar

    [19]

    Zhao B, Lian Y, Cui L, et al. 2020 Nat. Electron. 3 704Google Scholar

    [20]

    Li T, Xiang T, Wang M S, Zhang W, Shi J S, Shao M, Xu T F, Ahmadi M, Wu X Y, Gao Z, Xu L, Chen P 2021 Laser Photonics Rev. 15 2000495Google Scholar

    [21]

    Shi D, Adinolfi V, Comin R, et al. 2015 Science 347 519Google Scholar

    [22]

    Li W J, Lynch V, Thompson H, Fox M A 1997 J. Am. Chem. Soc. 119 7211Google Scholar

    [23]

    Gao C H, Cai S D, Gu W, Zhou D Y, Wang Z K, Liao L S 2012 ACS Appl. Mater Interfaces 4 5211Google Scholar

    [24]

    Gao C H, Yu F X, Xiong Z Y, Dong Y J, Ma X J, Zhang Y, Jia Y L, Wang R, Chen P, Zhou D Y, Xiong Z H 2019 Org. Electron. 70 264Google Scholar

    [25]

    Jia Y L, Wang R, Zhang Y, Ma X J, Yu F X, Xiong Z Y, Zhou D Y, Xiong Z H, Gao C H 2019 J. Lumin. 209 251Google Scholar

  • [1] 许青林, 项婷, 徐伟, 李婷, 吴小龑, 李巍, 邱学军, 陈平. 金纳米粒子修饰氧化铟锡阳极的高效率红光钙钛矿发光二极管. 物理学报, 2021, 70(20): 207803. doi: 10.7498/aps.70.20210500
    [2] 朱伟君, 陈金鑫, 高宇晗, 杨德仁, 马向阳. 硅基掺铒二氧化钛薄膜发光器件的电致发光: 共掺镱的增强发光作用. 物理学报, 2019, 68(12): 124204. doi: 10.7498/aps.68.20190300
    [3] 段聪聪, 程露, 殷垚, 朱琳. 蓝光钙钛矿发光二极管: 机遇与挑战. 物理学报, 2019, 68(15): 158503. doi: 10.7498/aps.68.20190745
    [4] 林圳旭, 林泽文, 张毅, 宋超, 郭艳青, 王祥, 黄新堂, 黄锐. 基于纳米硅结构的氮化硅基发光器件电致发光特性研究. 物理学报, 2014, 63(3): 037801. doi: 10.7498/aps.63.037801
    [5] 何月娣, 徐征, 赵谡玲, 刘志民, 高松, 徐叙瑢. 混合量子点器件电致发光的能量转移研究. 物理学报, 2014, 63(17): 177301. doi: 10.7498/aps.63.177301
    [6] 刘博智, 黎瑞锋, 宋凌云, 胡炼, 张兵坡, 陈勇跃, 吴剑钟, 毕刚, 王淼, 吴惠桢. 氧化锌锡作为电子传输层的量子点发光二极管. 物理学报, 2013, 62(15): 158504. doi: 10.7498/aps.62.158504
    [7] 刘静, 郑卫民, 宋迎新, 初宁宁, 李素梅, 丛伟艳. 量子限制受主远红外电致发光器件的制备与测量. 物理学报, 2010, 59(4): 2728-2733. doi: 10.7498/aps.59.2728
    [8] 朱海娜, 徐征, 赵谡玲, 张福俊, 孔超, 闫光, 龚伟. 量子阱结构对有机电致发光器件效率的影响. 物理学报, 2010, 59(11): 8093-8097. doi: 10.7498/aps.59.8093
    [9] 李春, 彭俊彪, 曾文进. 新型TPBI/Ag阴极结构的红色有机发光二极管. 物理学报, 2009, 58(3): 1992-1996. doi: 10.7498/aps.58.1992
    [10] 熊传兵, 江风益, 王 立, 方文卿, 莫春兰. 硅衬底垂直结构InGaAlN多量子阱发光二极管电致发光谱的干涉现象研究. 物理学报, 2008, 57(12): 7860-7864. doi: 10.7498/aps.57.7860
    [11] 孙 晖, 张琦锋, 吴锦雷. 基于氧化锌纳米线的紫外发光二极管. 物理学报, 2007, 56(6): 3479-3482. doi: 10.7498/aps.56.3479
    [12] 张国辉, 华玉林, 吴晓明, 印寿根, 牛 霞, 惠娟利, 王 宇, 张丽娟. 一种多层白色磷光有机电致发光器件的制备及性能研究. 物理学报, 2007, 56(9): 5408-5412. doi: 10.7498/aps.56.5408
    [13] 聂 海, 张 波, 唐先忠. 聚合物掺杂有机小分子发光二极管的电致发光与杂质陷阱效应. 物理学报, 2007, 56(1): 263-267. doi: 10.7498/aps.56.263
    [14] 锁 钒, 于军胜, 邓 静, 蒋亚东, 王 睿, 汪伟志, 刘天西. 芴-咔唑新型共聚物/PVK掺杂体系的电致发光特性研究. 物理学报, 2007, 56(11): 6685-6690. doi: 10.7498/aps.56.6685
    [15] 姜 燕, 杨盛谊, 张秀龙, 滕 枫, 徐 征, 侯延冰. 基于ZnSe的有机-无机异质结电致发光器件. 物理学报, 2006, 55(9): 4860-4864. doi: 10.7498/aps.55.4860
    [16] 张 鹏, 周印华, 刘秀芬, 田文晶, 李 敏, 张 国. PVK:DBVP掺杂体系的能量转移及发光性质的研究. 物理学报, 2006, 55(10): 5494-5498. doi: 10.7498/aps.55.5494
    [17] 侯林涛, 侯 琼, 彭俊彪, 曹 镛. 三元共聚物饱和红色电致发光研究. 物理学报, 2005, 54(11): 5377-5381. doi: 10.7498/aps.54.5377
    [18] 朱文清, 吴有智, 郑新友, 蒋雪茵, 张志林, 孙润光, 许少鸿. 双层有机电致发光器件中多成分激发态发射. 物理学报, 2004, 53(7): 2325-2329. doi: 10.7498/aps.53.2325
    [19] 孙永科, 衡成林, 王孙涛, 秦国刚, 马振昌, 宗婉华. Au/(SiO2/Si/SiO2)纳米双势垒/n+-Si结构的电致发光研究. 物理学报, 2000, 49(7): 1404-1408. doi: 10.7498/aps.49.1404
    [20] 许秀来, 徐 征, 侯延冰, 苏艳梅, 徐 叙. Gd3Ga5O12:Ag薄膜电致发光材料的制备及其发光性质. 物理学报, 2000, 49(7): 1390-1393. doi: 10.7498/aps.49.1390
计量
  • 文章访问数:  4529
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-30
  • 修回日期:  2022-05-26
  • 上网日期:  2022-10-12
  • 刊出日期:  2022-10-20

/

返回文章
返回