搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

扰动振幅和扰动频率对Fermi-Pasta-Ulam-Tsingou回归现象的影响

郑州 李金花 马佑桥 任海东

引用本文:
Citation:

扰动振幅和扰动频率对Fermi-Pasta-Ulam-Tsingou回归现象的影响

郑州, 李金花, 马佑桥, 任海东

Influence of perturbation amplitude and perturbation frequency on Fermi-Pasta-Ulam-Tsingou recurrence phenomenon

Zheng Zhou, Li Jin-Hua, Ma You-Qiao, Ren Hai-Dong
PDF
HTML
导出引用
  • Fermi-Pasta-Ulam-Tsingou (FPUT)回归现象指一个多模非线性系统能周期性回到初始激发态的一个复杂的非线性过程, 与该非线性系统的调制不稳定性密切相关. 针对实验中能如何较为方便地观察到FPUT回归现象以及能如何观察到更多FPUT循环的问题, 本文基于调制不稳定性重点分析研究了施加在平面波上的扰动振幅和扰动频率对所观察到的FPUT循环的影响. 我们发现, 扰动振幅可以极大程度地影响所观察到的FPUT现象: 1) FPUT循环数对扰动振幅的值非常敏感, 扰动振幅越大, FPUT循环数越多; 2) 扰动振幅较小(较大)时, 相应的FPUT循环频谱就比较规则(很不规则). 相比之下, 扰动频率对FPUT循环数的影响不是很大(在最佳调制频率附近的一个小范围内, 可观察到FPUT循环最多), 但是它对脉冲周期性振幅最大位置处所激发的高阶频率成分的影响比较大, 扰动频率越大(越小), 其可以激发的高阶频率成分越少(越多). 本文的研究结果将对FPUT实验的观测和理论发展提供一定的帮助.
    Fermi-Pasta-Ulam-Tsingou recurrence (FPUT) phenomenon refers to the property of a multimode nonlinear system returning to the initial states after complex stages of evolution. The FPUT recurrence phenomenon closely links with modulation instability (MI) by employing the perturbed continuous waves as the initial condition. When the perturbation frequency is located inside the MI spectra, then the perturbed CWs are unstable and the perturbations will grow up with evolution. This nonlinear MI evolution results in the FPUT phenomenon. In this work, we explore in detail the effects of perturbation amplitude and perturbation frequency on the FPUT recurrence phenomena numerically, which has never been studied systematically, to the best of our knowledge. Using the results of our studies, we find that the perturbation amplitude can significantly affect the FPUT phenomenon. Firstly, the number of FPUT cycles is very sensitive to the perturbation amplitude. Large (small) perturbation amplitude can result in much more (much less) FPUT cycles. Secondly, very irregular (regular) FPUT wave evolution together with the corresponding spectra evolution can be observed at relatively large (small) values of perturbation amplitude, where the unequal (equal) distances are observed between adjacent maximum wave amplitudes spatially in the background of optical fibers. In contrast, the effects of perturbation frequency on the FPUT cycles are relatively minor, and the maximum FPUT cycles are observed at perturbation frequencies around the optimal modulation frequency generating the peak MI gain. However, the perturbation frequency can drastically affect the number of high-order sidebands excited at the distances of periodic maximum wave amplitude formation. We find that larger perturbation frequency leads to much fewer high-order sidebands. According to our studies, for observing FPUT conveniently and observing more FPUT cycles, the perturbation amplitude of the input signal should be as large as possible and the perturbation frequency should be around the optimum modulation frequency. We should also emphasize that the large perturbation amplitude results in irregular FPUT patterns with unequal distances between adjacent maximum wave amplitude formations spatially in the background of optical fibers, and large perturbation frequency results in much less high-order sidebands. Our results will provide very helpful information for the FPUT observation in experiment, and should arouse the interest of the readers in nonlinear physics.
      Corresponding author: Zheng Zhou, 20201217020@nuist.edu.cn ; Li Jin-Hua, lijinhua@nuist.edu.cn
    [1]

    Fermi E, Pasta P, Ulam S, Tsingou M 1955 Studies of the Nonlinear Problems Los Alamos, May 1, 1955 pLA-1940

    [2]

    Zabusky N J, Kruskal M D 1965 Phys. Rev. Lett. 15 240Google Scholar

    [3]

    Bagchi D 2021 Phys. Rev. E 104 054108Google Scholar

    [4]

    Friesecke G, Mikikits-Leitner A 2015 J. Dyn. Differ. Equ. 27 627Google Scholar

    [5]

    Pan Q, Yin H M, Chow K W 2021 J. Mar. Sci. Eng. 9 577Google Scholar

    [6]

    Van Simaeys G, Emplit P, Haelterman M 2002 J. Opt. Soc. Am. B 19 477Google Scholar

    [7]

    Conforti M, Mussot A, Kudlinski A, Trillo S, Akhmediev N 2020 Phys. Rev. A 101 023843Google Scholar

    [8]

    Vanderhaegen G, Naveau C, Szriftgiser P, Kudlinski A, Conforti M, Mussot A, Onorato M, Trillo S, Chabchoub A, Akhmediev N 2021 Proc. Natl. Acad. Sci. USA 118 2019348118Google Scholar

    [9]

    Chen S C, Liu C, Yao X, Zhao L C, Akhmediev N 2021 Phys. Rev. E 104 024215Google Scholar

    [10]

    Akhmediev N, Korneev V 1986 Theor. Math. Phys. 69 1089Google Scholar

    [11]

    Ablowitz M J, Herbst B M 1990 Siam J. Appl. Math. 50 339Google Scholar

    [12]

    Wabnitz S, Wetzel B 2014 Phys. Lett. A 378 2750Google Scholar

    [13]

    Wang X, Dong Z, Deng Z 2021 Results Phys. 29 104715Google Scholar

    [14]

    Chabchoub A, Hoffmann N, Tobisch E, Waseda T, Akhmediev N 2019 Wave Motion 90 168Google Scholar

    [15]

    Yao X, Yang Z Y, Yang W L 2021 Nonlinear Dyn. 103 1035Google Scholar

    [16]

    Kuznetsov E A 2017 JETP Lett. 105 125Google Scholar

    [17]

    Erkintalo M, Genty G, Wetzel B, Dudley J M 2011 Phys. Lett. A 375 2029Google Scholar

    [18]

    Liu C, Chen S C, Yao X, Akhmediev N 2022 Physica D 433 133192Google Scholar

    [19]

    Che W J, Chen S C, Liu C, Zhao L C, Akhmediev N 2022 Phys. Rev. A 105 043526Google Scholar

    [20]

    Liu C, Wu Y H, Chen S C, Yao X, Akhmediev N 2021 Phys. Rev. Lett. 127 094102Google Scholar

    [21]

    Yao X, Liu C, Yang Z Y, Yang W L 2022 Phys. Rev. Res. 4 013246Google Scholar

    [22]

    Akhmediev N N 2001 Nature 413 267Google Scholar

    [23]

    Chin S A, Ashour O A, Belić M R 2015 Phys. Rev. E 92 063202Google Scholar

    [24]

    Grinevich P, Santini P 2018 Phys. Lett. A 382 973Google Scholar

    [25]

    Wabnitz S, Akhmediev N 2010 Opt. Commun. 283 1152Google Scholar

    [26]

    Fatome J, El-Mansouri I, Blanchet J L, Pitois S, Millot G, Trillo S, Wabnitz S 2013 J. Opt. Soc. Am. B 30 99Google Scholar

    [27]

    Erkintalo M, Hammani K, Kibler B, Finot C, Akhmediev N, Dudley J M, Genty G 2011 Phys. Rev. Lett. 107 253901Google Scholar

    [28]

    Soto-Crespo J M, Ankiewicz A, Devine N, Akhmediev N 2012 J. Opt. Soc. Am. B 29 1930Google Scholar

    [29]

    Mussot A, Kudlinski A, Droques M, Szriftgiser P, Akhmediev N 2014 Phys. Rev. X 4 011054Google Scholar

    [30]

    Mussot A, Naveau C, Conforti M, Kudlinski A, Copie F, Szriftgiser P, Trillo S 2018 Nat. Photonics 12 303Google Scholar

    [31]

    Kimmoun O, Hsu H, Branger H, Li M, Chen Y, Kharif C, Onorato M, Kelleher E J, Kibler B, Akhmediev N 2016 SCI. REP-UK 6 1Google Scholar

    [32]

    Naveau C, Szriftgiser P, Kudlinski A, Conforti M, Trillo S, Mussot A 2019 Opt. Lett. 44 5426Google Scholar

    [33]

    Naveau C, Szriftgiser P, Kudlinski A, Conforti M, Trillo S, Mussot A 2019 Opt. Lett. 44 763Google Scholar

    [34]

    Pierangeli D, Flammini M, Zhang L, Marcucci G, Agranat A J, Grinevich P G, Santini P M, Conti C, DelRe E 2018 Phys. Rev. X 8 041017Google Scholar

    [35]

    Goossens J W, Hafermann H, Jaouen Y 2019 Sci. Rep. 9 1Google Scholar

    [36]

    Vanderhaegen G, Szriftgiser P, Kudlinski A, Conforti M, Trillo S, Droques M, Mussot A 2020 Opt. Express 28 17773Google Scholar

    [37]

    Bao C, Jaramillo-Villegas J A, Xuan Y, Leaird D E, Qi M, Weiner A M 2016 Phys. Rev. Lett. 117 163901Google Scholar

    [38]

    Agrawal G P 2000 Nonlinear Science at the Dawn of the 21st Century (Berlin Heidelberg: Springer-Verlag) pp195–211

    [39]

    Yin H M, Chow K W 2021 Physica D 428 133033Google Scholar

  • 图 1  非线性光纤中, 扰动平面波(a)和相应频谱(b)随传输距离的演化; 平面波演化至z1FPUT = 3.2 m处的波形(c)及频谱(d). 图中P0 = 1 kW, δ = 0.001, $ \varOmega = {\varOmega _{\max }} = 5\sqrt {10}\; {\text{rad/ps}} $

    Fig. 1.  Evolution of perturbed plane wave (a) and corresponding spectra (b) with transmission distance; wave form (c) and corresponding spectra (d) at z1FPUT = 3.2 m in typical single-core fibers for P0 = 1 kW, δ = 0.001, $ \varOmega = {\varOmega _{\max }} = 5\sqrt {10} \;{\text{rad/ps}} $.

    图 2  非线性光纤中, 扰动平面波(a)和相应频谱(b)随传输距离的演化; 平面波演化至z1FPUT = 1.3 m处的波形(c)及频谱(d). 图中P0 = 1 kW, δ = 0.1, $ \varOmega = {\varOmega _{\max }} = 5\sqrt {10} \;{\text{rad/ps}} $

    Fig. 2.  Evolution of perturbed plane wave (a) and corresponding spectra (b) with transmission distance; wave form (c) and corresponding spectra (d) at z1FPUT =1.3 m in typical single-core fibers for P0 = 1 kW, δ = 0. 1, $ \varOmega = {\varOmega _{\max }} = 5\sqrt {10}\; {\text{rad/ps}} $.

    图 3  非线性光纤中FPUT循环数随扰动振幅δ的演化

    Fig. 3.  Variation of the number of FPUT cycle with the perturbation amplitude δ in nonlinear fibers.

    图 4  非线性光纤中, 扰动平面波(a)和相应频谱(b)随传输距离的演化; 平面波演化至z1FPUT = 0.4 m处的波形(c)及频谱(d). 图中P0 = 1 kW, δ = 0.7, $\varOmega = {\varOmega _{\max }} = 5\sqrt {10} \;{\text{rad/ps}}$

    Fig. 4.  Evolution of perturbed plane wave (a) and corresponding spectra (b) with transmission distance; wave form (c) and corresponding spectra (d) at z1FPUT = 0.4 m in typical single-core fibers for P0 = 1 kW, δ = 0.7, $\varOmega = {\varOmega _{\max }} = 5\sqrt {10} \;{\text{rad/ps}}$.

    图 5  非线性光纤中, 扰动平面波(a)和相应频谱(b)随传输距离的演化; 平面波演化至z1FPUT = 3.4 m处的波形(c)及频谱(d). 图中P0 = 1 kW, δ = 0.001, $ \varOmega = {\varOmega _{\text{c}}}/2 = 5\sqrt 5 \;{\text{rad/ps}} $

    Fig. 5.  Evolution of perturbed plane wave (a) and corresponding spectra (b) with transmission distance; wave form (c) and corresponding spectra (d) at z1FPUT = 3.4 m in typical single-core fibers for P0 = 1 kW, δ = 0.001, $ \varOmega = {\varOmega _{\text{c}}}/2 = 5\sqrt 5 \;{\text{rad/ps}} $.

    图 6  高阶谐波数随扰动频率Ω (Ωc/2 < Ω < Ωc)的变化关系图

    Fig. 6.  Variation of mode numbers of high-order sidebands with perturbation frequency Ω (Ωc/2 < Ω < Ωc).

    图 7  非线性光纤中, 扰动平面波(a)和相应频谱(b)随传输距离的演化; 平面波演化至z1FPUT = 8.22 m处的波形(c)及频谱(d). 图中P0 = 1 kW, δ = 0.001, Ω = 22 rad/ps

    Fig. 7.  Evolution of perturbed plane wave (a) and corresponding spectra (b) with transmission distance; wave form (c) and corresponding spectra (d) at z1FPUT = 8.22 m in typical single-core fibers for P0 = 1 kW, δ = 0.001, Ω = 22 rad/ps.

    图 8  非线性光纤中, 扰动平面波(a)和相应频谱(b)随传输距离的演化; 平面波演化至z1FPUT = 14.6 m处的波形(c)及频谱(d). 图中P0 = 1 kW, δ = 0.001, Ω = 22.3607 rad/ps

    Fig. 8.  Evolution of perturbed plane wave (a) and corresponding spectra (b) with transmission distance; wave form (c) and corresponding spectra (d) at z1FPUT = 14.6 m in typical single-core fibers for P0 = 1 kW, δ = 0.001, Ω = 22.3607 rad/ps.

  • [1]

    Fermi E, Pasta P, Ulam S, Tsingou M 1955 Studies of the Nonlinear Problems Los Alamos, May 1, 1955 pLA-1940

    [2]

    Zabusky N J, Kruskal M D 1965 Phys. Rev. Lett. 15 240Google Scholar

    [3]

    Bagchi D 2021 Phys. Rev. E 104 054108Google Scholar

    [4]

    Friesecke G, Mikikits-Leitner A 2015 J. Dyn. Differ. Equ. 27 627Google Scholar

    [5]

    Pan Q, Yin H M, Chow K W 2021 J. Mar. Sci. Eng. 9 577Google Scholar

    [6]

    Van Simaeys G, Emplit P, Haelterman M 2002 J. Opt. Soc. Am. B 19 477Google Scholar

    [7]

    Conforti M, Mussot A, Kudlinski A, Trillo S, Akhmediev N 2020 Phys. Rev. A 101 023843Google Scholar

    [8]

    Vanderhaegen G, Naveau C, Szriftgiser P, Kudlinski A, Conforti M, Mussot A, Onorato M, Trillo S, Chabchoub A, Akhmediev N 2021 Proc. Natl. Acad. Sci. USA 118 2019348118Google Scholar

    [9]

    Chen S C, Liu C, Yao X, Zhao L C, Akhmediev N 2021 Phys. Rev. E 104 024215Google Scholar

    [10]

    Akhmediev N, Korneev V 1986 Theor. Math. Phys. 69 1089Google Scholar

    [11]

    Ablowitz M J, Herbst B M 1990 Siam J. Appl. Math. 50 339Google Scholar

    [12]

    Wabnitz S, Wetzel B 2014 Phys. Lett. A 378 2750Google Scholar

    [13]

    Wang X, Dong Z, Deng Z 2021 Results Phys. 29 104715Google Scholar

    [14]

    Chabchoub A, Hoffmann N, Tobisch E, Waseda T, Akhmediev N 2019 Wave Motion 90 168Google Scholar

    [15]

    Yao X, Yang Z Y, Yang W L 2021 Nonlinear Dyn. 103 1035Google Scholar

    [16]

    Kuznetsov E A 2017 JETP Lett. 105 125Google Scholar

    [17]

    Erkintalo M, Genty G, Wetzel B, Dudley J M 2011 Phys. Lett. A 375 2029Google Scholar

    [18]

    Liu C, Chen S C, Yao X, Akhmediev N 2022 Physica D 433 133192Google Scholar

    [19]

    Che W J, Chen S C, Liu C, Zhao L C, Akhmediev N 2022 Phys. Rev. A 105 043526Google Scholar

    [20]

    Liu C, Wu Y H, Chen S C, Yao X, Akhmediev N 2021 Phys. Rev. Lett. 127 094102Google Scholar

    [21]

    Yao X, Liu C, Yang Z Y, Yang W L 2022 Phys. Rev. Res. 4 013246Google Scholar

    [22]

    Akhmediev N N 2001 Nature 413 267Google Scholar

    [23]

    Chin S A, Ashour O A, Belić M R 2015 Phys. Rev. E 92 063202Google Scholar

    [24]

    Grinevich P, Santini P 2018 Phys. Lett. A 382 973Google Scholar

    [25]

    Wabnitz S, Akhmediev N 2010 Opt. Commun. 283 1152Google Scholar

    [26]

    Fatome J, El-Mansouri I, Blanchet J L, Pitois S, Millot G, Trillo S, Wabnitz S 2013 J. Opt. Soc. Am. B 30 99Google Scholar

    [27]

    Erkintalo M, Hammani K, Kibler B, Finot C, Akhmediev N, Dudley J M, Genty G 2011 Phys. Rev. Lett. 107 253901Google Scholar

    [28]

    Soto-Crespo J M, Ankiewicz A, Devine N, Akhmediev N 2012 J. Opt. Soc. Am. B 29 1930Google Scholar

    [29]

    Mussot A, Kudlinski A, Droques M, Szriftgiser P, Akhmediev N 2014 Phys. Rev. X 4 011054Google Scholar

    [30]

    Mussot A, Naveau C, Conforti M, Kudlinski A, Copie F, Szriftgiser P, Trillo S 2018 Nat. Photonics 12 303Google Scholar

    [31]

    Kimmoun O, Hsu H, Branger H, Li M, Chen Y, Kharif C, Onorato M, Kelleher E J, Kibler B, Akhmediev N 2016 SCI. REP-UK 6 1Google Scholar

    [32]

    Naveau C, Szriftgiser P, Kudlinski A, Conforti M, Trillo S, Mussot A 2019 Opt. Lett. 44 5426Google Scholar

    [33]

    Naveau C, Szriftgiser P, Kudlinski A, Conforti M, Trillo S, Mussot A 2019 Opt. Lett. 44 763Google Scholar

    [34]

    Pierangeli D, Flammini M, Zhang L, Marcucci G, Agranat A J, Grinevich P G, Santini P M, Conti C, DelRe E 2018 Phys. Rev. X 8 041017Google Scholar

    [35]

    Goossens J W, Hafermann H, Jaouen Y 2019 Sci. Rep. 9 1Google Scholar

    [36]

    Vanderhaegen G, Szriftgiser P, Kudlinski A, Conforti M, Trillo S, Droques M, Mussot A 2020 Opt. Express 28 17773Google Scholar

    [37]

    Bao C, Jaramillo-Villegas J A, Xuan Y, Leaird D E, Qi M, Weiner A M 2016 Phys. Rev. Lett. 117 163901Google Scholar

    [38]

    Agrawal G P 2000 Nonlinear Science at the Dawn of the 21st Century (Berlin Heidelberg: Springer-Verlag) pp195–211

    [39]

    Yin H M, Chow K W 2021 Physica D 428 133033Google Scholar

  • [1] 胡智, 李金花, 李萌萌, 马佑桥, 任海东. 非线性光纤中Fermi-Pasta-Ulam-Tsingou现象的稳定性分析. 物理学报, 2024, 73(23): 235201. doi: 10.7498/aps.73.20241380
    [2] 李再东, 郭奇奇. 铁磁纳米线中磁化强度的磁怪波. 物理学报, 2020, 69(1): 017501. doi: 10.7498/aps.69.20191352
    [3] 段亮, 刘冲, 赵立臣, 杨战营. 基本非线性波与调制不稳定性的精确对应. 物理学报, 2020, 69(1): 010501. doi: 10.7498/aps.69.20191385
    [4] 裴世鑫, 徐辉, 孙婷婷, 李金花. 正三角型三芯光纤中等腰对称平面波的调制不稳定性分析. 物理学报, 2018, 67(5): 054203. doi: 10.7498/aps.67.20171650
    [5] 杜英杰, 谢小涛, 杨战营, 白晋涛. 电磁诱导透明系统中的暗孤子. 物理学报, 2015, 64(6): 064202. doi: 10.7498/aps.64.064202
    [6] 陈海军. 变分法研究二维光晶格中玻色-爱因斯坦凝聚的调制不稳定性. 物理学报, 2015, 64(5): 054702. doi: 10.7498/aps.64.054702
    [7] 张月, 卓青青, 刘红侠, 马晓华, 郝跃. 功率MOSFET的负偏置温度不稳定性效应中的平衡现象. 物理学报, 2013, 62(16): 167305. doi: 10.7498/aps.62.167305
    [8] 藤斐, 谢征微. 光晶格中双组分玻色-爱因斯坦凝聚系统的调制不稳定性. 物理学报, 2013, 62(2): 026701. doi: 10.7498/aps.62.026701
    [9] 贾维国, 周严勇, 韩永明, 包红梅, 扬盛际. 光子晶体光纤耦合器中的标量调制不稳定性. 物理学报, 2009, 58(9): 6323-6329. doi: 10.7498/aps.58.6323
    [10] 黄劲松, 陈海峰, 谢征微. 光晶格中双组分偶极玻色-爱因斯坦凝聚体的调制不稳定性. 物理学报, 2008, 57(6): 3435-3439. doi: 10.7498/aps.57.3435
    [11] 丁万山, 席 崚, 柳莲花. 基于复Ginzburg-Landau方程的双核光纤中调制不稳定性的仿真研究. 物理学报, 2008, 57(12): 7705-7711. doi: 10.7498/aps.57.7705
    [12] 戴小玉, 文双春, 项元江. 色散磁导率对异向介质中的调制不稳定性的影响. 物理学报, 2008, 57(1): 186-193. doi: 10.7498/aps.57.186
    [13] 赵兴东, 谢征微, 张卫平. 玻色凝聚的原子自旋链中的非线性自旋波. 物理学报, 2007, 56(11): 6358-6366. doi: 10.7498/aps.56.6358
    [14] 贾维国, 史培明, 杨性愉, 张俊萍, 樊国梁. 高斯变迹布拉格光纤光栅中的调制不稳定性. 物理学报, 2007, 56(9): 5281-5286. doi: 10.7498/aps.56.5281
    [15] 贾维国, 史培明, 杨性愉, 张俊萍, 樊国梁. 保偏光纤中相近频率传输区域的调制不稳定性. 物理学报, 2006, 55(9): 4575-4581. doi: 10.7498/aps.55.4575
    [16] 吴 昆, 吴 健, 徐 晗, 曾和平. 超短激光脉冲调制上转换放大. 物理学报, 2005, 54(8): 3749-3756. doi: 10.7498/aps.54.3749
    [17] 李齐良, 朱海东, 唐向宏, 李承家, 王小军, 林理彬. 有源光放大器链路中交叉相位调制的不稳定性. 物理学报, 2004, 53(12): 4194-4201. doi: 10.7498/aps.53.4194
    [18] 赵阳, 杨祥林. 非线性单模光纤中的调制不稳定性. 物理学报, 1989, 38(4): 541-547. doi: 10.7498/aps.38.541
    [19] 贺贤士. 等离子体中调制不稳定性和波包的坍缩过程. 物理学报, 1983, 32(5): 627-639. doi: 10.7498/aps.32.627
    [20] 夏蒙棼, 周如玲. 逃逸电子不稳定性. 物理学报, 1980, 29(6): 788-793. doi: 10.7498/aps.29.788
计量
  • 文章访问数:  4074
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-12
  • 修回日期:  2022-05-26
  • 上网日期:  2022-09-08
  • 刊出日期:  2022-09-20

/

返回文章
返回