搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光和电注入变带隙AlGaAs/GaAs 负电子亲和势阵列阴极理论建模和结构特性分析

邓文娟 周甜 王壮飞 吴粤川 彭新村 邹继军

引用本文:
Citation:

光和电注入变带隙AlGaAs/GaAs 负电子亲和势阵列阴极理论建模和结构特性分析

邓文娟, 周甜, 王壮飞, 吴粤川, 彭新村, 邹继军

Theoretical modeling and analyzing structural characteristics of AlGaAs/GaAs negative electron affinity array cathode with optically and electrically injected variable bandgap

Deng Wen-Juan, Zhou Tian, Wang Zhuang-Fei, Wu Yue-Chuan, Peng Xin-Cun, Zou Ji-Jun
PDF
HTML
导出引用
  • 为了使具备光和电注入AlGaAs/GaAs 负电子亲和势(NEA)阵列阴极获得较高的发射电流效率, 基于变带隙发射阵列中电子输运的二维连续性方程, 利用有限体积法进行数值求解和仿真, 得到发射电流和发射电流效率. 通过仿真得到既适合光注入又合适电注入的各层最佳参数范围. 结果表明, 选择占空比为2/3的阵列微纳米柱, 获得光注入阴极的最佳入射光角度范围为10°—30°; 光注入(电注入)情况下P型变带隙AlGaAs层阵列微纳米柱高度范围为0.3—0.6 μm (0.1—0.3 μm), N型变带隙AlGaAs层、N型AlGaAs层以及P型AlGaAs层最佳厚度范围分别为0.5—2.5 μm (2—3 μm), 0.5—1.0 μm (0.8—1.2 μm)和0.2—0.5 μm (0.1—0.3 μm); P型AlGaAs层和N型AlGaAs层最佳掺杂浓度范围分别为5×1018—1×1019 cm–3 (1×1018—5×1018 cm–3)和1×1018—5×1018 cm–3 (5×1017—1×1018 cm–3). 光注入下发射电流效率最大为35.04%, 单位长度最大发射电流为10.3 nA/μm; 电注入下发射电流效率最大为31.23%, 单位长度最大发射电流105.5 μA/μm.
    In order to obtain high emission current efficiency of the AlGaAs/GaAs NEA array cathode, this array cathode has two ways to form electron emission, i.e. optical injection and electrical injection. The two-dimensional continuity equation of electronic transport in the variable bandgap emission array is solved numerically by using the finite volume method thereby obtaining the emission current and emission current efficiency. Simulation obtains the optimal parameter range for each layer of the AlGaAs/GaAs NEA array cathode under both optical injection and electrical injection. The results show that the optimal angle of incident light for the array cathode under light injection is 10°–30° for selecting an array micro-nano column with a duty cycle of 2/3. Under the condition of light injection, the P-type variable bandgap AlGaAs layer array micro-nano column height ranges from 0.3–0.6 μm. Under the condition of electrical injection, the height of the micro-nano column of the P-type variable bandgap AlGaAs layer array is 0.1–0.3 μm. The optimal thickness range of N-type variable bandgap AlGaAs layer, N-type AlGaAs layer, and P-type AlGaAs layer under light injection are 0.5–2.5 μm, 0.5–1.0 μm and 0.2–0.5 μm, respectively. The optimal thickness range of N-type variable bandgap AlGaAs layer, N-type AlGaAs layer, and P-type AlGaAs layer under electrical injection conditions are 2–3 μm, 0.8–1.2 μm and 0.1–0.3 μm, respectively. The optimal doping concentration of P-type AlGaAs layer and N-type AlGaAs layer under light injection are range from 5×1018 to 1×1019 cm–3 and from 1×1018 to 5×1018 cm–3, respectively. The optimal doping concentration of the P-type AlGaAs layer and the N-type AlGaAs layer under electrical injection range from 1×1018 to 5×1018 cm–3 and from 5×1017 to 1×1018 cm–3, respectively. The maximum efficiency of the emission current under the light injection is 35.04%, and the maximum emission current per unit length is 10.3 nA/μm. The maximum efficiency of the emission current under electrical injection is 31.23%, and the maximum emission current per unit length is 105.5 μA/μm. Electric injection cathode does not need expensive and complex drive laser system, and the light injection control mode is simple, so light injection or electrical injection control mode can be chosen as needed. The research of array cathode, which integrates the advantages of many advanced technologies, is of great significance for enriching the cathode array cathode emission theory and expanding its application field.
      通信作者: 邹继军, jjzou@ecut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61961001, 11875012, 62061001, 61771245)、江西省自然科学基金(批准号: 20181BAB202026, 20192ACBL20003, 20202BAB202013, 20203BBE53030)、江西省“双千计划”项目(批准号: jxsq2019201053)和江西省教育厅科技项目(批准号: GJJ170451)资助的课题.
      Corresponding author: Zou Ji-Jun, jjzou@ecut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61961001, 11875012, 62061001, 61771245), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20181BAB202026, 20192ACBL20003, 20202BAB202013, 20203BBE53030), the Jiangxi Double Thousand Plan, China (Grant No. jxsq2019201053), and the Science and Technology Project of Department of Education of Jiangxi Province, China (Grant No. GJJ170451).
    [1]

    Tsentalovich E, Barkhuff D, Chen J, Dodson G, Farkhondeh M, Franklin W, Ihloff E, Kaertner F, Tschalaer C, Yang B, Zwart T 2007 Nucl. Instrum. Methods Phys. Res., Sect. A 582 413Google Scholar

    [2]

    Benson S V, Douglas D, Neil G R, Shinn M D 2011 J. Phys. Conf. Ser. 299 012014Google Scholar

    [3]

    Liu W, Chen Y Q, Lu W T, Moy A, Poelker M, Stutzman M, Zhang S K 2016 Appl. Phys. Lett. 109 252104Google Scholar

    [4]

    Yamamoto N, Yamamoto M, Kuwahara M, Sakai R, Morino T, Tamagaki K, Mano A, Utsu A, Okumi S, Nakanishi T, Kuriki M, Bo C, Ujihara T, Takeda Y 2007 J. Appl. Phys. 102 024904Google Scholar

    [5]

    Pierce D T, Meier F 1976 Phys. Rev. B 13 5484Google Scholar

    [6]

    滕利华, 牟丽君 2017 物理学报 66 046802Google Scholar

    Teng L H, Mu L J 2017 Acta Phys. Sin. 66 046802Google Scholar

    [7]

    Su C Y, Spicer W E, Lindau I 1983 J. Appl. Phys. 54 1413Google Scholar

    [8]

    Cultrera L, Galdi A, Bae J K, Ikponmwen F, Maxson J, Bazarov I 2020 Phys. Rev. Accel. Beams 23 023401Google Scholar

    [9]

    Machuca F, Liu Z, Sun Y, Pianetta P, Spicer W E, Pease R F W 2003 J. Vac. Sci. Technol. B 21 1863Google Scholar

    [10]

    Maruyama T, Brachmann A, Clendenin J E, Desikan T, Garwin E L, Kirby R E, Luh D A, Turner J, Prepost R 2002 Nucl. Instrum. Methods Phys. Res. Sect. A 492 199Google Scholar

    [11]

    李晓峰 2001 博士学位论文 (西安: 中国科学院西安光学精密机械研究所)

    Li X F 2001 Ph. D. Dissertation (Xi’an: Xi’an Institute of Optical and Precision Mechanics, Chinese Academy of Sciences) (in Chinese)

    [12]

    Zhang Q, Bai X F, Cheng H C, Jiao G C, Li Z K, Han K, Li Q 2022 Acta Photonica Sin. 51 0304005Google Scholar

    [13]

    Liu L, Lu F F, Tian J, Zhangyang X Y, Lv Z S 2020 J. Mater. Sci. Technol. 58 86Google Scholar

    [14]

    邓文娟, 彭新村, 邹继军, 江少涛, 郭栋, 张益军, 常本康 2014 物理学报 63 167902Google Scholar

    Deng W J, Peng X C, Zou J J, Jiang S T, Guo D, Zhang Y J, Chang B K 2014 Acta Phys. Sin. 63 167902Google Scholar

    [15]

    邹继军, 高频, 杨智, 常本康 2008 光子学报 37 1112

    Zou J J, Gao P, Yang Z, Chang B K 2008 Acta Photonica Sin. 37 1112

    [16]

    Xia S, Liu L, Kong Y K 2016 Opt. Quantum Electron. 48 306Google Scholar

    [17]

    张涛 2018 电子世界 15 65

    Zhang T 2018 Electron. World 15 65

    [18]

    曾梦丝, 彭新村 2018 光学仪器 40 67

    Zeng M S, Peng X C 2018 Opt. Instrum. 40 67

    [19]

    邹继军, 张益军, 杨智, 常本康 2011 物理学报 60 017902Google Scholar

    Zou J J, Zhang Y J, Yang Z, Chang B K 2011 Acta Phys. Sin. 60 017902Google Scholar

    [20]

    Xia J Y, Zou J J, Peng X C, Deng W J, Zhang Y J 2020 Ultramicroscopy 219 113121Google Scholar

    [21]

    Ding X J, Ge X W, Zou J J, Zhang Y J, Peng X C, Deng W J, Chen Z P, Zhao W J, Chang B K 2016 Opt. Commun. 367 149Google Scholar

  • 图 1  光和电注入阵列阴极结构

    Fig. 1.  Optical and electrical injection array cathode structure.

    图 2  光和电注入NEA阵列阴极光电发射过程和能带结构图

    Fig. 2.  Photoelectric emission process and band structure diagram of the light and electrical injection NEA array cathode.

    图 3  (a) 发射电流效率α随入射光波长变化曲线; (b) 发射电流效率α随入射光角度变化曲线, 其中阵列阴极Na, Nd, Tcp, Tp, TnTcn分别为5×1018 cm–3, 1×1018 cm–3, 0.2 μm, 0.1 μm, 0.3 μm和1.0 μm

    Fig. 3.  (a) Emission current efficiency α versus incident wavelength; (b) emission current efficiency αversus incident light angle, where Na, Nd, Tcp, Tp, Tn and Tcn of the array cathode are 5×1018 cm–3, 1×1018 cm–3, 0.2 μm, 0.1 μm, 0.3 μm and 1.0 μm, respectively.

    图 4  电注入阵列阴极发射电流和发射电流效率随电压变化曲线. 其中阵列阴极Na, Nd, Tcp, Tp, TnTcn分别为5×1018 cm–3, 1×1018 cm–3, 0.1 μm, 0.1 μm, 0.3 μm和1.0 μm

    Fig. 4.  The cathodic emission current and emission current efficiency of the electrically implanted array vary with voltage. The array cathode Na, Nd, Tcp, Tp, Tn and Tcn are 5×1018 cm–3, 1×1018 cm–3, 0.1 μm, 0.1 μm, 0.3 μm, 1.0 μm, respectively.

    图 5  (a) 光注入时P型变带隙AlGaAs层厚度变化(a)和P型AlGaAs层厚度变化(b)对阵列阴极发射电流效率α的影响; 电注入时P型变带隙AlGaAs层厚度变化(c)和P型AlGaAs层厚度变化(d)对阵列阴极发射电流效率的影响. 其中光注入入射光角度为20°. (a)和(c)中Tp = 0.1 μm, (b)和(d)中Tcp = 0.2 μm, (a), (b), (c), (d)中阵列阴极Na, Nd, TnTcn分别为5×1018 cm–3, 1×1018 cm–3, 0.3 μm和1.0 μm

    Fig. 5.  (a) The effect of the thickness change of P-band gap AlGaAs layer on the emission current efficiency of array cathode during optical injection; (b) the effect of thickness variation of P-type AlGaAs layer on emission current efficiency of array cathode during optical injection; (c) the effect of p-gap AlGaAs layer thickness variation on emission current efficiency of array cathode during electric injection; (d) the effect of thickness variation of P-type AlGaAs layer on emission current efficiency of array cathode during electric injection. The light injection angle is 20°. Tp is 0.1 μm in Figure (a) and Figure (c), Tcp is 0.2 μm in Figure (b) and Figure (d), and array cathode Na, Nd, Tn and Tcn are 5×1018 cm–3, 1×1018 cm–3, 0.3 μm and 1.0 μm in Figure (a), (b), (c) and (d), respectively.

    图 6  光注入时N型AlGaAs层厚度的变化对阵列阴极发射电流效率(a)和阵列阴极发射电流效率(b)的影响; 电注入时N型AlGaAs层厚度的变化对阵列阴极发射电流效率(c)和阵列阴极发射电流效率(d)的影响. 其中光注入入射光角度为20°, (a)和(c)中Tcn = 1 μm, (b)和(d)中Tcp = 0.3 μm, (a), (b), (c)和(d)中阵列阴极Na, Nd, TcpTp分别为5×1018 cm–3, 1×1018 cm–3, 0.2 μm和0.1 μm

    Fig. 6.  (a) The effect of thickness variation of N-type AlGaAs layer on emission current efficiency of array cathode during optical injection; (b) effect of the thickness of N-type variable band gap AlGaAs layer on the emission current efficiency of array cathode during optical injection; (c) the effect of thickness variation of N-type AlGaAs layer on emission current efficiency of array cathode during electric injection; (d) the effect of the thickness of N-type variable band gap AlGaAs layer on the emission current efficiency of array cathode during electric injection. The light injection angle is 20°, Tcn is 1 μm in Figure (a) and Figure (c), Tcp is 0.3 μm in Figure (b) and Figure (d), and array cathode Na, Nd, Tcp and Tp are 5×1018 cm–3, 1×1018 cm–3, 0.2 μm and 0.1 μm in Figure (a), (b), (c) and (d), respectively.

    图 7  (a) 光注入时P型AlGaAs层和P型变带隙AlGaAs层掺杂浓度Na变化对阵列阴极发射电流效率的影响; (b) 电注入时P型AlGaAs层和P型变带隙AlGaAs层掺杂浓度Na的变化对阵列阴极发射电流效率的影响. 其中光注入入射光角度为20º, 阵列阴极Nd, Tcp, Tp, TnTcn分别为1 × 1018 cm–3, 0.2 μm, 0.1 μm, 0.3 μm和1.0 μm

    Fig. 7.  (a) The effect of doping concentration Na of P-type AlGaAs layer and P-type bandgap AlGaAs layer on emission current efficiency of array cathode during optical injection; (b) the effect of doping concentration Na of P-type AlGaAs layer and P-type bandgap AlGaAs layer on emission current efficiency of array cathode during electric injection. Incidence angle of optical injection is 20°, and the array cathode Nd, Tcp, Tp, Tn and Tcn are 1 × 1018 cm–3, 0.2 μm, 0.1 μm, 0.3 μm and 1.0 μm, respectively.

    图 8  (a) 光注入时N型变带隙AlGaAs层和N-AlGaAs层掺杂浓度Nd变化对阵列阴极发射电流效率的影响; (b) 电注入时N型变带隙AlGaAs层和N-AlGaAs层掺杂浓度Nd的变化对阵列阴极发射电流效率的影响. 光注入入射光角度为20°, 阵列阴极Na, Tcp, Tp, TnTcn分别为5 × 1018 cm–3, 0.2 μm, 0.1 μm, 0.3 μm和1.0 μm

    Fig. 8.  (a) Effect of doping concentration Nd variation of N-type bandgap AlGaAs layer and N-AlGaAs layer on emission current efficiency of array cathode during optical injection; (b) the effect of doping concentration Nd of N-type variable band gap AlGaAs layer and N-AlGaAs layer on emission current efficiency of array cathode during electric injection. Incidence angle of optical injection is 20°, and the array cathode Na, Tcp, Tp, Tn and Tcn are 5 × 1018 cm–3, 0.2 μm, 0.1 μm, 0.3 μm and 1.0 μm, respectively.

  • [1]

    Tsentalovich E, Barkhuff D, Chen J, Dodson G, Farkhondeh M, Franklin W, Ihloff E, Kaertner F, Tschalaer C, Yang B, Zwart T 2007 Nucl. Instrum. Methods Phys. Res., Sect. A 582 413Google Scholar

    [2]

    Benson S V, Douglas D, Neil G R, Shinn M D 2011 J. Phys. Conf. Ser. 299 012014Google Scholar

    [3]

    Liu W, Chen Y Q, Lu W T, Moy A, Poelker M, Stutzman M, Zhang S K 2016 Appl. Phys. Lett. 109 252104Google Scholar

    [4]

    Yamamoto N, Yamamoto M, Kuwahara M, Sakai R, Morino T, Tamagaki K, Mano A, Utsu A, Okumi S, Nakanishi T, Kuriki M, Bo C, Ujihara T, Takeda Y 2007 J. Appl. Phys. 102 024904Google Scholar

    [5]

    Pierce D T, Meier F 1976 Phys. Rev. B 13 5484Google Scholar

    [6]

    滕利华, 牟丽君 2017 物理学报 66 046802Google Scholar

    Teng L H, Mu L J 2017 Acta Phys. Sin. 66 046802Google Scholar

    [7]

    Su C Y, Spicer W E, Lindau I 1983 J. Appl. Phys. 54 1413Google Scholar

    [8]

    Cultrera L, Galdi A, Bae J K, Ikponmwen F, Maxson J, Bazarov I 2020 Phys. Rev. Accel. Beams 23 023401Google Scholar

    [9]

    Machuca F, Liu Z, Sun Y, Pianetta P, Spicer W E, Pease R F W 2003 J. Vac. Sci. Technol. B 21 1863Google Scholar

    [10]

    Maruyama T, Brachmann A, Clendenin J E, Desikan T, Garwin E L, Kirby R E, Luh D A, Turner J, Prepost R 2002 Nucl. Instrum. Methods Phys. Res. Sect. A 492 199Google Scholar

    [11]

    李晓峰 2001 博士学位论文 (西安: 中国科学院西安光学精密机械研究所)

    Li X F 2001 Ph. D. Dissertation (Xi’an: Xi’an Institute of Optical and Precision Mechanics, Chinese Academy of Sciences) (in Chinese)

    [12]

    Zhang Q, Bai X F, Cheng H C, Jiao G C, Li Z K, Han K, Li Q 2022 Acta Photonica Sin. 51 0304005Google Scholar

    [13]

    Liu L, Lu F F, Tian J, Zhangyang X Y, Lv Z S 2020 J. Mater. Sci. Technol. 58 86Google Scholar

    [14]

    邓文娟, 彭新村, 邹继军, 江少涛, 郭栋, 张益军, 常本康 2014 物理学报 63 167902Google Scholar

    Deng W J, Peng X C, Zou J J, Jiang S T, Guo D, Zhang Y J, Chang B K 2014 Acta Phys. Sin. 63 167902Google Scholar

    [15]

    邹继军, 高频, 杨智, 常本康 2008 光子学报 37 1112

    Zou J J, Gao P, Yang Z, Chang B K 2008 Acta Photonica Sin. 37 1112

    [16]

    Xia S, Liu L, Kong Y K 2016 Opt. Quantum Electron. 48 306Google Scholar

    [17]

    张涛 2018 电子世界 15 65

    Zhang T 2018 Electron. World 15 65

    [18]

    曾梦丝, 彭新村 2018 光学仪器 40 67

    Zeng M S, Peng X C 2018 Opt. Instrum. 40 67

    [19]

    邹继军, 张益军, 杨智, 常本康 2011 物理学报 60 017902Google Scholar

    Zou J J, Zhang Y J, Yang Z, Chang B K 2011 Acta Phys. Sin. 60 017902Google Scholar

    [20]

    Xia J Y, Zou J J, Peng X C, Deng W J, Zhang Y J 2020 Ultramicroscopy 219 113121Google Scholar

    [21]

    Ding X J, Ge X W, Zou J J, Zhang Y J, Peng X C, Deng W J, Chen Z P, Zhao W J, Chang B K 2016 Opt. Commun. 367 149Google Scholar

  • [1] 张竣珲, 樊利, 吴正茂, 苟宸豪, 骆阳, 夏光琼. 基于光注入下脉冲电流调制1550 nm 垂直腔面发射激光器获取宽带可调谐光学频率梳. 物理学报, 2023, 72(1): 014207. doi: 10.7498/aps.72.20221709
    [2] 周沛, 张仁恒, 朱尖, 李念强. 基于双路光电反馈下光注入半导体激光器的高性能线性调频信号产生. 物理学报, 2022, 71(21): 214204. doi: 10.7498/aps.71.20221308
    [3] 王学友, 王宇飞, 郑婉华. Parity-time对称性对电注入半导体激光器的模式控制. 物理学报, 2020, 69(2): 024202. doi: 10.7498/aps.69.20191351
    [4] 苏斌斌, 陈建军, 吴正茂, 夏光琼. 混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性. 物理学报, 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [5] 刘庆喜, 潘炜, 张力月, 李念强, 阎娟. 基于外光注入互耦合垂直腔面发射激光器的混沌随机特性研究. 物理学报, 2015, 64(2): 024209. doi: 10.7498/aps.64.024209
    [6] 曹体, 林晓东, 夏光琼, 陈兴华, 吴正茂. 光注入和光电反馈联合作用下垂直腔表面发射激光器的动力学特性研究. 物理学报, 2012, 61(11): 114202. doi: 10.7498/aps.61.114202
    [7] 杨炳星, 夏光琼, 林晓东, 吴正茂. 光脉冲注入下VCSEL的偏振开关特性. 物理学报, 2009, 58(3): 1480-1483. doi: 10.7498/aps.58.1480
    [8] 吕玉祥, 孙帅, 杨星. 基于光注入Fabry-Perot半导体激光器实现同步全光分路时钟提取与波长转换. 物理学报, 2009, 58(4): 2467-2475. doi: 10.7498/aps.58.2467
    [9] 王新庆, 李 良, 褚宁杰, 金红晓, 葛洪良. 纳米碳管阵列场发射电流密度的理论数值优化. 物理学报, 2008, 57(11): 7173-7177. doi: 10.7498/aps.57.7173
    [10] 杨 浩, 郭 霞, 关宝璐, 王同喜, 沈光地. 注入电流对垂直腔面发射激光器横模特性的影响. 物理学报, 2008, 57(5): 2959-2965. doi: 10.7498/aps.57.2959
    [11] 钟东洲, 曹文华, 吴正茂, 夏光琼. 各向异性光反馈注入的垂直表面发射激光器的矢量偏振模转换机理. 物理学报, 2008, 57(3): 1548-1556. doi: 10.7498/aps.57.1548
    [12] 范 燕, 夏光琼, 吴正茂. 光注入下外光反馈半导体激光器输出自相关特性研究. 物理学报, 2008, 57(12): 7663-7667. doi: 10.7498/aps.57.7663
    [13] 牛生晓, 张明江, 安 义, 贺虎成, 李静霞, 王云才. 外光注入半导体激光器实现重复速率可调全光时钟分频. 物理学报, 2008, 57(11): 6998-7004. doi: 10.7498/aps.57.6998
    [14] 刘胜芳, 夏光琼, 吴加贵, 李林福, 吴正茂. 强光注入提高光反馈VCSELs混沌载波基频. 物理学报, 2008, 57(3): 1502-1505. doi: 10.7498/aps.57.1502
    [15] 钟东洲, 夏光琼, 王 飞, 吴正茂. 基于光反馈的单向耦合注入垂直腔表面发射激光器的矢量混沌同步特性研究. 物理学报, 2007, 56(6): 3279-3291. doi: 10.7498/aps.56.3279
    [16] 李 远, 赵谡玲, 徐 征, 张福俊, 黄金昭, 宋 林, 欧阳平. 提高电子注入的固态阴极射线发光的研究. 物理学报, 2007, 56(9): 5526-5530. doi: 10.7498/aps.56.5526
    [17] 王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭 萍. 光注入提高半导体激光器混沌载波发射机的带宽. 物理学报, 2007, 56(8): 4372-4377. doi: 10.7498/aps.56.4372
    [18] 王云才, 赵跃鹏, 张明江, 安 义, 王纪龙. 外光注入半导体激光器实现时钟分频. 物理学报, 2007, 56(12): 6982-6988. doi: 10.7498/aps.56.6982
    [19] 李孝峰, 潘 炜, 马 冬, 罗 斌, 张伟利, 熊 悦. 激光器自发辐射噪声对混沌光通信系统的影响. 物理学报, 2006, 55(10): 5094-5104. doi: 10.7498/aps.55.5094
    [20] 谭淞生, 陈沛然. 多极管中正偏pn结光注入载流子的作用. 物理学报, 1980, 29(10): 1237-1244. doi: 10.7498/aps.29.1237
计量
  • 文章访问数:  4651
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-05
  • 修回日期:  2022-08-15
  • 上网日期:  2022-11-26
  • 刊出日期:  2022-12-05

/

返回文章
返回