搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超分子结构单元研究黑索金的弹性各向异性

位付景 张伟斌 董闯 陈华

引用本文:
Citation:

超分子结构单元研究黑索金的弹性各向异性

位付景, 张伟斌, 董闯, 陈华

Study of elastic anisotropy for 1, 3, 5-trinitro-1, 3, 5-triazacyclohexane by supramolecular structural unit

Wei Fu-Jing, Zhang Wei-Bin, Dong Chuang, Chen Hua
PDF
HTML
导出引用
  • 含能材料的弹性性质微观上体现了分子间的结合力, 且与含能材料的化学分解和爆炸相关. 因此, 弹性性质-晶体结构的关联为设计具有特定性质的新材料和理解含能材料点火起爆提供了理论基础. 本文提出超分子结构单元作为最小化学单元来定量表征黑索金(RDX)不同晶面的弹性模量. 基于超分子结构单元的弹性模量模型表明, 与弹性模量相关的微观因素有: 超分子结构单元的分子对数量、分子对的平衡距离、分子间力常数以及分子间非键能与晶面法线的夹角; 而弹性模量的各向异性来源于分子间非键能与晶面法线的夹角不同. 研究结果表明, RDX的超分子结构单元包含15个RDX分子, 以该超分子结构单元计算得到RDX(100), (010), (001), (210)和(021)晶面的弹性模量分别为21.7, 17.1, 20.1, 19.1和15.3 GPa. 除RDX(001)晶面外, 以上晶面的理论计算值与超声共振谱、脉冲激热散射、布里渊散射和纳米压痕实验值基本吻合. RDX(001)晶面的计算值(20.1 GPa)远高于实验值 (15.9—16.6 GPa), 原因可能是计算过程中将RDX分子看作刚性体, 忽略了RDX(001)晶面在外界载荷作用下发生的分子内六元环和NO2基团的移动和变形.
    The relation between elastic property and crystal structure provides a foundation for designing new materials with desired properties and understanding the chemical decomposition and explosion of energetic materials. The supramolecular structural unit is proposed as the smallest chemical unit to quantitatively characterize the elastic anisotropy of 1, 3, 5-trinitro-1, 3, 5-triazacyclohexane (RDX). The supramolecular structural unit refers to the nearest-neighbor coordination polyhedron of one molecule. The supramolecular structural unit of RDX is composed of 15 molecules, and analyzed by the total molecular number density and the density of intermolecular interactions. The elastic modulus model is established on the assumption that 1) the RDX molecule is of sphere and rigid-body; 2) the intermolecular interaction is regarded as a linear spring, i.e. it is described by a bond-spring model; 3) the molecules are close-packed in the series mode. The elastic modulus model based on the supramolecular structural unit demonstrates that the elastic modulus is intrinsically determined by the total molecular number, the equilibrium distance of the molecular pair, the intermolecular force constant, and the angle between the intermolecular non-bonding interaction and the normal to crystal face. The intermolecular force constant is calculated as the second derivative of the intermolecular interaction with respect to the equilibrium centroid distance. The intermolecular interaction is expressed as the summation of van der Waals and electrostatic interactions calculated by COMPASS (condensed-phase optimized molecular potentials for atomistic simulation studies) II forcefield. The calculated elastic moduli are 21.7, 17.1, 20.1, 19.1, and 15.3 GPa for RDX (100), (010), (001), (210), and (021) crystal faces, respectively. The calculation results are consistent with the theoretical values computed by the density functional theory. Excluding RDX(001), the calculated elastic moduli accord with the experimental results measured by the resonant ultrasound spectroscopy (RUS), impulsive stimulated thermal scattering, Brillouin spectroscopy, and nanoindentation methods. The theoretical value (20.1 GPa) of RDX(001) overestimates the experimental values in a range of 15.9–16.6 GPa. The reason can be attributed to the rigid-body approximation for flexible molecules, in which are ignored the motion and deformation of the ring and NO2 groups when the external loads are applied to RDX(001). The results suggest that the supramolecular structural unit can be the smallest chemical unit to quantitatively characterize the elastic anisotropy of RDX and the elastic anisotropy is mainly due to the angle between the intermolecular interaction and the normal to crystal face.
      通信作者: 董闯, dong@dlut.edu.cn ; 陈华, chenhua9@caep.cn
      Corresponding author: Dong Chuang, dong@dlut.edu.cn ; Chen Hua, chenhua9@caep.cn
    [1]

    Mishra M K, Sanphui P, Ramamurty U, Desiraju G 2014 Cryst. Growth. Des. 14 3054Google Scholar

    [2]

    Sunil S L, Kiran M, Ramamurty U, Varughese S 2018 Chem. Eur. J. 25 526Google Scholar

    [3]

    Armstrong R, Elban W L 2006 Mater. Sci. Technol. 22 381Google Scholar

    [4]

    王鹏举, 范俊宇, 苏艳, 赵纪军 2020 物理学报 69 238702Google Scholar

    Wang P J, Fan J Y, Su Y, Zhao J J 2020 Acta Phys. Sin. 69 238702Google Scholar

    [5]

    Ramos K J, Hooks D E, Bahr D F 2009 Philos. Mag. 89 2381Google Scholar

    [6]

    Haussühl S 2001 Z. Krist-Cryst. Mater. 216 339Google Scholar

    [7]

    Schwarz R, Hooks D, Dick J, Archuleta J, Martinez A 2005 J. Appl. Phys. 98 056106Google Scholar

    [8]

    Sun B, Winey J, Hemmi N, Dreger Z, Zimmerman K, Gupta Y, Torchinsky D H, Nelson K A 2008 J. Appl. Phys. 104 073517Google Scholar

    [9]

    Bolme C A, Ramos K J 2014 J. Appl. Phys. 116 77Google Scholar

    [10]

    Weingarten N S, Sausa R C 2015 J. Phys. Chem. A 119 9338Google Scholar

    [11]

    Taylor D E 2014 J. Appl. Phys. 116 053513Google Scholar

    [12]

    Liu J, Zeng Q, Zhang Y L, Zhang C Y 2016 J. Phys. Chem. C 120 15198Google Scholar

    [13]

    Shi Y B, Bai L F, Li J H, Sun G A, Gong J, Ju X 2019 J. Mol. Model. 25 299Google Scholar

    [14]

    Zhu S H, Qin H, Zeng W, Liu F S, Tang B, Liu Q J, Li R X, Gan Y D 2020 Philos Mag. 100 1015Google Scholar

    [15]

    Fan J Y, Su Y, Zhang Q Y, Zhao J J 2019 Comp. Mater. Sci. 161 379Google Scholar

    [16]

    Hang G Y, Yu W L, Wang T, Wang J T, Li Z 2017 J. Mol. Struct. 1141 577Google Scholar

    [17]

    Sun H J 1998 J. Phys. Chem. B 102 7338Google Scholar

    [18]

    Spackman P R, Grosjean A, Thomas S P, Karothu D P, Naumov P, Spackman M A 2022 Angew. Chem. Int. Ed. 61 e202110716Google Scholar

    [19]

    Day G M, Price S L, Leslie M 2001 Cryst. Growth. Des. 1 13Google Scholar

    [20]

    Zhang S, Wang Q, Dong C 2021 J. Mater. Inf. 1 8Google Scholar

    [21]

    Dong D D, Zhang S, Wang Z J, Dong C, Haeussler P 2016 Mater. Design. 96 115Google Scholar

    [22]

    Wang Z R, Qiang J B, Wang Y M, Wang Q, Dong D D, Dong C 2016 Acta Mater. 111 366Google Scholar

    [23]

    Ma Y, Wang Q, Jiang B B, Li C L, Hao J M, Li X N, Dong C, Nieh T G 2018 Acta Mater. 147 213Google Scholar

    [24]

    Dong D D, Cao Z M, Han G, Dong C 2021 AIP. Adv. 11 035140Google Scholar

    [25]

    Chen H, Luo L J, Qiang J B, Wang Y M, Dong C 2014 Philos. Mag. 94 1463Google Scholar

    [26]

    Friedel J 1958 II Nuovo. Cimento. 7 287Google Scholar

    [27]

    Dong C, Wang Z J, Zhang S, Wang Y M 2019 Int. Mater. Rev. 65 286Google Scholar

    [28]

    Li T, Morris K R, Park K 2000 J. Phys. Chem. B 104 2019Google Scholar

    [29]

    Bandyopadhya R, Grant D 2002 Pharm. Res. 19 491Google Scholar

    [30]

    Zaccone A, Lattuada M, Wu H, Morbidelli M 2007 J. Chem. Phys. 127 174512Google Scholar

    [31]

    Weiner J H 1984 J. Appl. Mech. 51 707Google Scholar

    [32]

    Gao C, Yang L, Zeng Y, Wang X, Zhang C, Dai R, Wang Z, Zheng X, Zhang Z 2017 J. Phys. Chem. C 121 17586Google Scholar

    [33]

    Accelrys. Materials Studio Release Notes, Release 5.5, Accelrys Software. Inc. San Diego 2010, https://www.3ds.com/products-services/biovia/ [2022-8-10]

    [34]

    Desiraju G R 2013 J. Am. Chem. Soc. 135 9952Google Scholar

    [35]

    Bu R P, Xiong Y, Wei X F, Li H Z, Zhang C Y 2019 Cryst. Growth. Des. 19 5981Google Scholar

    [36]

    Konovalova I S, Shishkina S V, Bani-Khaled G, Muzyka E N, Boyko A N 2019 Cryst. Eng. Comm. 21 2908Google Scholar

    [37]

    Eckhardt C J, Gavezzotti A 2007 J. Phys. Chem. B 111 3430Google Scholar

    [38]

    Peng Q, Rahul, Wang G Y, Liu G R, Grimme S, De S 2015 J. Phys. Chem. B 119 5896Google Scholar

  • 图 1  弹性模量模型示意图 (a) 键-弹簧模型; (b) RDX的超分子结构单元; (c) 未变形 (即平衡状态)时的分子对构型; (d) 外界载荷作用下, 发生形变后的分子对构型. 其中, 黄色分子代表RDX超分子结构单元的中心分子

    Fig. 1.  Schematic diagram of the elastic modulus model: (a) Bond-spring model; (b) the supramolecular structural unit of RDX; (c) molecular pair in the un-deformed (i.e., equilibrium position) configuration; (d) molecular pair in the deformed configuration under the external loads. The yellow molecule represents the central molecule of the supramolecular structural unit of RDX.

    图 2  (a) 5×5×5的RDX超晶胞, 其中A, B, O/C代表超晶胞的晶轴; (b) RDX的总分子数密度和分子间非键能密度曲线

    Fig. 2.  (a) The 5×5×5 supercell structure of RDX, where A, B, and O/C refer to the crystal axis of the supercell; (b) the radial total molecular number density and the density of intermolecular interaction curves of RDX.

    图 3  (a) RDX的超分子结构单元, 其中黄色分子为中心分子; (b) RDX超分子结构单元内不同分子对的分子间非键能曲线

    Fig. 3.  (a) Supramolecular structural unit of RDX, and the yellow molecule represents the central molecule; (b) the intermolecular interaction curves of molecular pairs extracted from the supramolecular structural unit of RDX.

    表 1  分子间非键能曲线确定的平衡距离R0[12]、分子间作用能Elow和分子间力常数k, 以及真实晶胞中的平衡距离r0和分子间非键能E0[37]

    Table 1.  Equilibrium distance R0[12], the lowest intermolecular interaction Elow, and intermolecular force constant k obtained by intermolecular non-bonded interaction curves, the equilibrium distance r0 and intermolecular non-bonded interaction E0[37] in the actual crystal lattice.

    r0/nmR0/nm[12]R0/nmElow/(kcal·mol–1)E0/(kcal·mol–1)[37]k/(N·m–1)
    0.44150440.426030.428–6.86–6.2519.985
    0.64475230.633850.660–1.57–2.687.211
    0.65509150.647000.640–3.22–2.686.729
    0.69444330.687250.691–3.94–3.3510.677
    0.72919930.708890.737–4.46–5.589.546
    0.72920550.710–6.39–5.8018.522
    0.81448250.769220.760–2.285.045
    0.81469580.754–4.7613.018
    下载: 导出CSV

    表 2  RDX超分子结构单元内分子对的平衡位置R0、分子间非键能与晶面法线(hkl )的夹角余弦值cosθ和分子间力常数k

    Table 2.  Equilibrium distance R0 of the molecular pair, the cosine value of the angle cosθ between the intermolecular non-bonded interactions and the normal to (hkl ), and the intermolecular force constants k within the RDX supramolecular structural unit.

    R0/nmk/(N·m–1)cosθ (021)cosθ (210)cosθ (001)cosθ (100)cosθ (010)
    0.42819.9850.0676–0.1388–0.7174–0.94910
    0.6607.211–0.0622–0.30310.83050.94910
    0.6607.211–0.8999–0.3031–0.8305–0.26450.2695
    0.6406.729–0.5944–0.75660.3339–0.48800.4972
    0.6406.7290.93120.20480.33390.6084–0.7936
    0.69110.6770.1588–0.79630.3150.60840.7936
    0.69110.6770.15880.79630.3150–0.5571
    0.7379.546–0.68530.078600–0.5571
    0.7379.5460.68530.942300.60840.3011
    0.71018.5220.63030.67430.73430.60840.3011
    0.71018.522–0.11030.6743–0.7343–0.8090–0.4409
    0.7605.0450.6997–0.07520.92600.8090–0.4409
    0.75413.018–0.5768–0.9186–0.3888–0.3289–0.8834
    0.75413.018–0.57680.4389–0.3888–0.32890.8834
    下载: 导出CSV

    表 3  由不同实验方法和理论计算得到的RDX多个晶面的弹性模量. 其中, ERUS, EISTS, EBriEnano分别代表由超声共振谱、脉冲激热散射法、布里渊散射法和纳米压痕法实验测定的弹性模量值; EDFTEcal为密度泛函理论和超分子结构单元法的计算值

    Table 3.  Elastic moduli of multiple crystal faces for RDX are obtained by experimental and theoretical calculations. ERUS, EISTS, EBri, and Enano refer to the elastic moduli experimentally measured by resonant ultrasound spectroscopy, impulsive stimulated thermal scattering, Brillouin spectroscopy, and nanoindentation approaches, respectively. EDFT and Ecal represent the elastic moduli theoretically calculated by the density functional theory and the supramolecular structural unit, respectively.

    RDXERUS/GPa[7]EISTS/GPa[8]EBri/GPa[9]Enano/GPa[5]EDFT/GPa[15]Ecal/GPa
    (100)21.521.021.525.721.7
    (010)17.216.416.318.817.1
    (001)16.615.916.216.220.520.1
    (210)20.520.020.321.022.819.1
    (021)15.514.914.918.216.315.3
    下载: 导出CSV
  • [1]

    Mishra M K, Sanphui P, Ramamurty U, Desiraju G 2014 Cryst. Growth. Des. 14 3054Google Scholar

    [2]

    Sunil S L, Kiran M, Ramamurty U, Varughese S 2018 Chem. Eur. J. 25 526Google Scholar

    [3]

    Armstrong R, Elban W L 2006 Mater. Sci. Technol. 22 381Google Scholar

    [4]

    王鹏举, 范俊宇, 苏艳, 赵纪军 2020 物理学报 69 238702Google Scholar

    Wang P J, Fan J Y, Su Y, Zhao J J 2020 Acta Phys. Sin. 69 238702Google Scholar

    [5]

    Ramos K J, Hooks D E, Bahr D F 2009 Philos. Mag. 89 2381Google Scholar

    [6]

    Haussühl S 2001 Z. Krist-Cryst. Mater. 216 339Google Scholar

    [7]

    Schwarz R, Hooks D, Dick J, Archuleta J, Martinez A 2005 J. Appl. Phys. 98 056106Google Scholar

    [8]

    Sun B, Winey J, Hemmi N, Dreger Z, Zimmerman K, Gupta Y, Torchinsky D H, Nelson K A 2008 J. Appl. Phys. 104 073517Google Scholar

    [9]

    Bolme C A, Ramos K J 2014 J. Appl. Phys. 116 77Google Scholar

    [10]

    Weingarten N S, Sausa R C 2015 J. Phys. Chem. A 119 9338Google Scholar

    [11]

    Taylor D E 2014 J. Appl. Phys. 116 053513Google Scholar

    [12]

    Liu J, Zeng Q, Zhang Y L, Zhang C Y 2016 J. Phys. Chem. C 120 15198Google Scholar

    [13]

    Shi Y B, Bai L F, Li J H, Sun G A, Gong J, Ju X 2019 J. Mol. Model. 25 299Google Scholar

    [14]

    Zhu S H, Qin H, Zeng W, Liu F S, Tang B, Liu Q J, Li R X, Gan Y D 2020 Philos Mag. 100 1015Google Scholar

    [15]

    Fan J Y, Su Y, Zhang Q Y, Zhao J J 2019 Comp. Mater. Sci. 161 379Google Scholar

    [16]

    Hang G Y, Yu W L, Wang T, Wang J T, Li Z 2017 J. Mol. Struct. 1141 577Google Scholar

    [17]

    Sun H J 1998 J. Phys. Chem. B 102 7338Google Scholar

    [18]

    Spackman P R, Grosjean A, Thomas S P, Karothu D P, Naumov P, Spackman M A 2022 Angew. Chem. Int. Ed. 61 e202110716Google Scholar

    [19]

    Day G M, Price S L, Leslie M 2001 Cryst. Growth. Des. 1 13Google Scholar

    [20]

    Zhang S, Wang Q, Dong C 2021 J. Mater. Inf. 1 8Google Scholar

    [21]

    Dong D D, Zhang S, Wang Z J, Dong C, Haeussler P 2016 Mater. Design. 96 115Google Scholar

    [22]

    Wang Z R, Qiang J B, Wang Y M, Wang Q, Dong D D, Dong C 2016 Acta Mater. 111 366Google Scholar

    [23]

    Ma Y, Wang Q, Jiang B B, Li C L, Hao J M, Li X N, Dong C, Nieh T G 2018 Acta Mater. 147 213Google Scholar

    [24]

    Dong D D, Cao Z M, Han G, Dong C 2021 AIP. Adv. 11 035140Google Scholar

    [25]

    Chen H, Luo L J, Qiang J B, Wang Y M, Dong C 2014 Philos. Mag. 94 1463Google Scholar

    [26]

    Friedel J 1958 II Nuovo. Cimento. 7 287Google Scholar

    [27]

    Dong C, Wang Z J, Zhang S, Wang Y M 2019 Int. Mater. Rev. 65 286Google Scholar

    [28]

    Li T, Morris K R, Park K 2000 J. Phys. Chem. B 104 2019Google Scholar

    [29]

    Bandyopadhya R, Grant D 2002 Pharm. Res. 19 491Google Scholar

    [30]

    Zaccone A, Lattuada M, Wu H, Morbidelli M 2007 J. Chem. Phys. 127 174512Google Scholar

    [31]

    Weiner J H 1984 J. Appl. Mech. 51 707Google Scholar

    [32]

    Gao C, Yang L, Zeng Y, Wang X, Zhang C, Dai R, Wang Z, Zheng X, Zhang Z 2017 J. Phys. Chem. C 121 17586Google Scholar

    [33]

    Accelrys. Materials Studio Release Notes, Release 5.5, Accelrys Software. Inc. San Diego 2010, https://www.3ds.com/products-services/biovia/ [2022-8-10]

    [34]

    Desiraju G R 2013 J. Am. Chem. Soc. 135 9952Google Scholar

    [35]

    Bu R P, Xiong Y, Wei X F, Li H Z, Zhang C Y 2019 Cryst. Growth. Des. 19 5981Google Scholar

    [36]

    Konovalova I S, Shishkina S V, Bani-Khaled G, Muzyka E N, Boyko A N 2019 Cryst. Eng. Comm. 21 2908Google Scholar

    [37]

    Eckhardt C J, Gavezzotti A 2007 J. Phys. Chem. B 111 3430Google Scholar

    [38]

    Peng Q, Rahul, Wang G Y, Liu G R, Grimme S, De S 2015 J. Phys. Chem. B 119 5896Google Scholar

  • [1] 万法琦, 马艳平, 董丹丹, 丁万昱, 姜宏, 董闯, 贺建雄. 氧化物玻璃中的类分子结构单元. 物理学报, 2020, 69(13): 136101. doi: 10.7498/aps.69.20191892
    [2] 盛宇, 张楠, 王开友, 马星桥. 自旋轨道矩调控的垂直磁各向异性四态存储器结构. 物理学报, 2018, 67(11): 117501. doi: 10.7498/aps.67.20180216
    [3] 肖嘉星, 鲁军, 朱礼军, 赵建华. 垂直磁各向异性L10-Mn1.67Ga超薄膜分子束外延生长与磁性研究. 物理学报, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [4] 刘本琼, 宋建明, 张伟斌, 罗伟, 王燕, 夏元华, 宗和厚, 高国防, 孙光爱. 黑索金的非弹性中子散射及第一性原理计算. 物理学报, 2016, 65(4): 047802. doi: 10.7498/aps.65.047802
    [5] 于涛, 刘毅, 朱正勇, 钟汇才, 朱开贵, 苟成玲. Mo覆盖层对MgO/CoFeB/Mo结构磁各向异性的影响. 物理学报, 2015, 64(24): 247504. doi: 10.7498/aps.64.247504
    [6] 王日兴, 肖运昌, 赵婧莉. 垂直磁各向异性自旋阀结构中的铁磁共振. 物理学报, 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [7] 张首誉, 包尚联, 亢孝俭, 高嵩. 描述人体内水分子扩散各向异性特征的新方法. 物理学报, 2013, 62(20): 208703. doi: 10.7498/aps.62.208703
    [8] 程和平, 但加坤, 黄智蒙, 彭辉, 陈光华. 黑索金电子结构和光学性质的第一性原理研究. 物理学报, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [9] 龚伯仪, 周欣, 赵晓鹏. 光频三维各向同性左手超材料结构单元模型的仿真设计. 物理学报, 2011, 60(4): 044101. doi: 10.7498/aps.60.044101
    [10] 万勇, 韩文娟, 刘均海, 夏临华, Xavier Mateos, Valentin Petrov, 张怀金, 王继扬. 单斜结构的Yb:KLu(WO4)2晶体光谱和激光性质的各向异性. 物理学报, 2009, 58(1): 278-284. doi: 10.7498/aps.58.278.1
    [11] 何安民, 秦承森, 邵建立, 王裴. 金属Al表面熔化各向异性的分子动力学模拟. 物理学报, 2009, 58(4): 2667-2674. doi: 10.7498/aps.58.2667
    [12] 吴 超, 谢自力, 张 荣, 张 曾, 刘 斌, 李 弋, 傅德颐, 修向前, 韩 平, 施 毅, 郑有炓. m面GaN平面内结构和光学各向异性研究. 物理学报, 2008, 57(11): 7190-7193. doi: 10.7498/aps.57.7190
    [13] 孟繁义, 吴 群, 傅佳辉, 顾学迈, 李乐伟. 三维各向异性超常媒质交错结构的亚波长谐振特性研究. 物理学报, 2008, 57(10): 6213-6220. doi: 10.7498/aps.57.6213
    [14] 施方也, 方允樟, 孙怀君, 郑金菊, 林根金, 吴锋民. 应力退火Fe基纳米晶薄带横向磁各向异性的介观结构研究. 物理学报, 2007, 56(7): 4009-4016. doi: 10.7498/aps.56.4009
    [15] 许小勇, 潘 靖, 胡经国. 交换偏置双层膜中的反铁磁自旋结构及其交换各向异性. 物理学报, 2007, 56(9): 5476-5482. doi: 10.7498/aps.56.5476
    [16] 林宝勤, 徐利军, 袁乃昌. 以各向异性介质为衬底的共面紧凑型光子带隙结构. 物理学报, 2005, 54(8): 3711-3715. doi: 10.7498/aps.54.3711
    [17] 张海燕, 刘镇清, 马小松. 界面层对层状各向异性复合结构中Lamb波的影响. 物理学报, 2003, 52(10): 2492-2499. doi: 10.7498/aps.52.2492
    [18] 胡社军, 特古斯, 魏兴钊, 张雷, 曾德长, 刘正义, F.R.deBoer, K.H.J.Buschow. Ho2(Co,Si)17化合物的结构与磁晶各向异性. 物理学报, 2000, 49(2): 355-360. doi: 10.7498/aps.49.355
    [19] 王文军, 徐建华, 陆兴泽, 王恭明, 王文澄. 有机分子膜中各向异性的微扰理论和实验研究. 物理学报, 1999, 48(6): 1179-1184. doi: 10.7498/aps.48.1179
    [20] 陆全康, 陈国荣, 王钤, 熊小明, 金勇, 唐明. 辐射在各向异性等离子体中散射的结构因子. 物理学报, 1983, 32(5): 618-626. doi: 10.7498/aps.32.618
计量
  • 文章访问数:  3641
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-11
  • 修回日期:  2023-03-17
  • 上网日期:  2023-03-21
  • 刊出日期:  2023-05-05

/

返回文章
返回