搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间站问天舱等离子体原位成像探测技术

刘超 张爱兵 孙越强 孔令高 王文静 关燚炳 王永松 郑香脂 田峥 高俊

引用本文:
Citation:

空间站问天舱等离子体原位成像探测技术

刘超, 张爱兵, 孙越强, 孔令高, 王文静, 关燚炳, 王永松, 郑香脂, 田峥, 高俊

Plasma in-situ imaging detection technology on China’s Space Station Wentian module

Liu Chao, Zhang Ai-Bing, Sun Yue-Qiang, Kong Ling-Gao, Wang Wen-Jing, Guan Yi-Bing, Wang Yong-Song, Zheng Xiang-Zhi, Tian Zheng, Gao Jun
PDF
HTML
导出引用
  • 等离子体原位成像探测器是中国空间站的第一批舱外空间环境科学载荷, 安装在问天舱的舱外暴露平台, 将首次在空间站平台上开展电离层等离子体原位、成像、充电电位等多要素综合探测任务. 其中, 原位探测要素包括空间站轨道等离子体的密度、温度以及问天舱表面电位强度等. 成像探测要素包括离子能量、运动方向和成像时间分辨率等. 等离子体原位成像探测器采用多传感器的一体化设计, 集成了朗缪尔探针、阻滞势分析仪、参考电位计和离子成像仪等技术. 其中, 离子成像技术是首次应用于我国的空间环境探测领域. 等离子体原位成像探测技术在中国科学院国家空间科学中心定标实验室完成了测试验证, 探测器已随问天舱成功发射, 即将开展中低纬电离层的精细化探测, 为完善空间站轨道电离层模型提供等离子体探测数据. 通过探测累积长周期的充电电位数据, 为研究等离子体对空间站的充电效应, 促进空间站充电评估体系的建立提供支持.
    In order to meet the needs of ionospheric research and monitoring of space station charging, the technology of plasma in-situ imaging detection is studied. The plasma in-situ imaging detector is one of the first outside scientific payloads of the Chinese space station to detect the space environment. It is installed on the extravehicular platform of the Wentian module, and will carry out multi-element comprehensive detection of ionospheric plasma, including in-situ, imaging, and charging potential. The refined detection data of the low latitude ionosphere will provide plasma parameters for improving the orbital ionospheric model of the space station. And the long-term charging potential data are collected to support the studying of the charging effect of plasma on the space station and promoting the establishment of the space station charging evaluation system.The plasma in-situ imaging detector integrates Langmuir probe, retarding potential analyzer, ion drift meter, reference potentiometer, ion imaging technology, etc. Electron density and electron temperature are measured by Langmuir probe. Ion composition,ion density,ion temperature, and ion drift velocity are measured by retarding potential analyzer and ion drift meter. The ion imaging parameters are obtained by ion imager. The reference potential sensor is available to provide the measurements of charging potential of Wentian module. The Langmuir probe sensor inherits the design of the Langmuir probe sensor of CSES (Zhangheng-1 satellite). The retarding potential analyzer and ion drift meter also inherit the design of CSES (Zhangheng-1 satellite), and improve the design of grid voltage and collector voltage which can be adjusted adaptively according to on orbit state. The ion imager consists of an electrostatic deflection module, a Whalen analyzer and an imaging module. The ion imaging technology is for the first time applied to the field of space environment detection in China.The plasma in-situ imaging detector is tested and calibrated to verify the performance at the National Space Science Center of the Chinese Academy of Sciences. when this paper is submitted, the detector mounted on Wentian module has been successfully launched. Next, the detector will be assembled by astronauts inside the capsule using external interfaces . Then, the detector will be grabbed by the robotic arm and installed on the extravehicular experimental platform to start a long-term exploration mission.
      通信作者: 刘超, liuch@nssc.ac.cn
    • 基金项目: 国家科技重大专项(批准号: Y79002AH40)资助的课题
      Corresponding author: Liu Chao, liuch@nssc.ac.cn
    • Funds: Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. Y79002AH40).
    [1]

    王成, 赵海生, 刘波, 陈亮, 肖鹏, 刘露, 刘敏, 眭晓虹, 郭午龙 2022 中国空间科学技术 42 114Google Scholar

    Wang C, Zhao H S, LIU B, Chen L, Xiao P, Liu L, Liu m, Sui X H, Guo W L 2022 Chin. Space Sci. Technol. 42 114Google Scholar

    [2]

    刘琨, 袁志刚, 周晨, 赵家奇, 朱庆林, 董翔, 王海宁, 盛冬生 2021 电波科学学报 36 692Google Scholar

    Liu K, Yuan Z G, Zhou C, Zhao J Q, Zhu Q L, Dong X, Wang H N, Sheng D S 2021 Chin. J. Radio Sci. 36 692Google Scholar

    [3]

    刘传保 2013 航天电子对抗 29 47

    Liu C B 2013 Aerosp. Electron. Warfare 29 47

    [4]

    Craven P D, Kenneth H W, Joseph I M, Victoria N C, Todd A S, Jason A V, Dale C F, Linda N P 2009 47th Aerospace Sciences Meeting Orlando, USA, January 5–8, 2009 p119

    [5]

    Steve K, Terri C, William H, William S, Megan H, Gary D, Benjamin G, Jerry V 2020 J. Space Saf. Eng. 7 461Google Scholar

    [6]

    黄建国, 易忠, 孟立飞, 赵华, 刘业楠 2013 物理学报 62 229401Google Scholar

    Huang J G, Yi Z, Menf L F, Zhao H, Liu Y N 2013 Acta Phys. Sin. 62 229401Google Scholar

    [7]

    Mott-Smith H M,Irving Langmuir 1926 Phys. Rev. 28 727Google Scholar

    [8]

    Liu C, Guan Y B, Zheng X Z, Zhang A B, Piero D, Sun Y Q 2019 Sci. Chin. Technol. Sci. 62 829Google Scholar

    [9]

    刘超, 关燚炳, 张爱兵, 郑香脂, 孙越强 2016 物理学报 65 189401Google Scholar

    Liu C, Guan Y B, Zhang A B, Zheng X Z, Sun Y Q 2016 Acta Phys Sin. 65 189401Google Scholar

    [10]

    郑香脂, 张爱兵, 关燚炳, 刘超, 王文静, 田峥, 孔令高, 孙越强 2017 物理学报 66 079401Google Scholar

    Zheng X Z, Zhang A B, Guan Y B, Liu C, Wang W J, Tian Z, Kong L G, Sun Y Q 2017 Acta Phys Sin. 66 079401Google Scholar

    [11]

    Heelis R A, Hanson W B 1998 Geophys. Monogr. Ser. 102 61Google Scholar

    [12]

    Hanson W B, Zuccaro D R, Lippincott C R, Sanatani S 1973 Radio Sci. 8 333Google Scholar

    [13]

    郑香脂, 张爱兵, 关燚炳, 刘超, 孙越强, 王文静, 田峥, 孔令高, 丁建京 2017 物理学报 66 209401Google Scholar

    Zheng X Z, Zhang A B, Guan Y B, Liu C, Sun Y Q, Wang W J, Tian Z, Kong L G, Ding J J 2017 Acta Phys. Sin. 66 209401Google Scholar

    [14]

    Zuccaro D R, Holt B J 1982 J. Geophys. Res. 87 8327Google Scholar

    [15]

    Knudsen D J, Burchill J K, Buchert S C, Eriksson A I, Gill R, Wahlund J E, Åhlen L, Smith M, Moffat B 2017 J. Geophys. Res. Space Phys. 122 2655Google Scholar

    [16]

    Knudsen D J, Burchill J K, Cameron T G, Enno G A, Howarth A, Yau A W 2015 Space Sci. Rev. 189 65Google Scholar

    [17]

    Knudsen D J, Burchill J K, Berg K, Cameron T, Enno G A, Marcellus C G, King E P, Wevers I, King R A 2003 Rev. Sci. Instrum. 74 202Google Scholar

  • 图 1  等离子体原位成像探测器组成

    Fig. 1.  The composition of the plasma in-situ and imaging detector.

    图 2  朗缪尔探针伏安特性曲线

    Fig. 2.  The I-V characteristic curve of Langmuir probe.

    图 3  空间站在–100 V充电电位下的等离子体鞘仿真

    Fig. 3.  The simulation of space station plasma sheath (with –100 V).

    图 4  朗缪尔探针伸杆展开过程

    Fig. 4.  The figure of Langmiur probe extension process.

    图 5  阻滞势分析仪传感器结构

    Fig. 5.  Structural diagram of retarding potential analyzer sensor.

    图 6  阻滞势分析仪伏安特性曲线

    Fig. 6.  The I-V characteristic curve of retarding potential analyzer.

    图 7  离子漂移计传感器收集极示意图

    Fig. 7.  The figure of ion drift meter sensor collector.

    图 8  离子漂移计传感器结构

    Fig. 8.  Structural diagram of ion drift meter sensor.

    图 9  参考电位计动态电位的仿真结果

    Fig. 9.  Dynamic potential simulation result of reference potentiometer.

    图 10  离子成像仪传感器结构

    Fig. 10.  Structural diagram of ion imager sensor.

    图 11  定标测试系统组成框图.

    Fig. 11.  A simplified sketch of the calibration facility.

    图 12  离子成像仪对7种能量离子的测试图像(图中绿色星号为视场中心)

    Fig. 12.  Images of 7 kinds of energy ions (the green asterisk is the center of the field view).

    图 13  成像径向位置与离子能量的拟合关系曲线

    Fig. 13.  Normalized curve of imaging radial position and ion energy.

    图 14  离子成像仪在离子束能量为E = 51.84 eV时俯仰角扫描测试图像(俯仰角扫描范围–3.5°— 0.5°, 间隔0.5°)

    Fig. 14.  Images of one test case (ion energy is 51.84 eV and deflection voltage is 0 V).

    图 15  离子成像仪俯仰角与偏转板因子拟合曲线

    Fig. 15.  Fitting curve of elevation angle and deflection plate factor.

    表 1  任务要求的性能参数

    Table 1.  Performances of mission requirements.

    参数类型指标
    等离子体
    原位探测
    离子成分H+, He+, O+
    密度范围/cm–31×103—1×107
    密度测量相对精度优于10%
    温度范围/K500—10000
    温度测量相对精度优于10%
    电位范围/V–300— +300
    离子漂移速度/(km·s–1)–3— +3
    离子漂移速度
    测量精度/(m·s–1)
    横向: 优于20

    纵向: 优于50
    等离子体离子
    成像探测
    能量范围/eV0.1 — 204
    能量分辨率≤15%
    视场≥360°×94°
    角度分辨率≤2°×3°
    时间分辨率/ms≤45
    下载: 导出CSV

    表 2  定标测试系统性能参数

    Table 2.  Performances of the calibration system.

    离子参数性能
    能量范围/eV50 —30000
    能量散度≤2%
    通量范围/(cm–2·s–1)103—1013
    束斑直径/mm≥70
    转台定位精度/mm≤0.1
    转台角度精度≤0.1°
    磁场控制范围/nT≤500
    真空度/Pa≥5×10–5
    下载: 导出CSV
  • [1]

    王成, 赵海生, 刘波, 陈亮, 肖鹏, 刘露, 刘敏, 眭晓虹, 郭午龙 2022 中国空间科学技术 42 114Google Scholar

    Wang C, Zhao H S, LIU B, Chen L, Xiao P, Liu L, Liu m, Sui X H, Guo W L 2022 Chin. Space Sci. Technol. 42 114Google Scholar

    [2]

    刘琨, 袁志刚, 周晨, 赵家奇, 朱庆林, 董翔, 王海宁, 盛冬生 2021 电波科学学报 36 692Google Scholar

    Liu K, Yuan Z G, Zhou C, Zhao J Q, Zhu Q L, Dong X, Wang H N, Sheng D S 2021 Chin. J. Radio Sci. 36 692Google Scholar

    [3]

    刘传保 2013 航天电子对抗 29 47

    Liu C B 2013 Aerosp. Electron. Warfare 29 47

    [4]

    Craven P D, Kenneth H W, Joseph I M, Victoria N C, Todd A S, Jason A V, Dale C F, Linda N P 2009 47th Aerospace Sciences Meeting Orlando, USA, January 5–8, 2009 p119

    [5]

    Steve K, Terri C, William H, William S, Megan H, Gary D, Benjamin G, Jerry V 2020 J. Space Saf. Eng. 7 461Google Scholar

    [6]

    黄建国, 易忠, 孟立飞, 赵华, 刘业楠 2013 物理学报 62 229401Google Scholar

    Huang J G, Yi Z, Menf L F, Zhao H, Liu Y N 2013 Acta Phys. Sin. 62 229401Google Scholar

    [7]

    Mott-Smith H M,Irving Langmuir 1926 Phys. Rev. 28 727Google Scholar

    [8]

    Liu C, Guan Y B, Zheng X Z, Zhang A B, Piero D, Sun Y Q 2019 Sci. Chin. Technol. Sci. 62 829Google Scholar

    [9]

    刘超, 关燚炳, 张爱兵, 郑香脂, 孙越强 2016 物理学报 65 189401Google Scholar

    Liu C, Guan Y B, Zhang A B, Zheng X Z, Sun Y Q 2016 Acta Phys Sin. 65 189401Google Scholar

    [10]

    郑香脂, 张爱兵, 关燚炳, 刘超, 王文静, 田峥, 孔令高, 孙越强 2017 物理学报 66 079401Google Scholar

    Zheng X Z, Zhang A B, Guan Y B, Liu C, Wang W J, Tian Z, Kong L G, Sun Y Q 2017 Acta Phys Sin. 66 079401Google Scholar

    [11]

    Heelis R A, Hanson W B 1998 Geophys. Monogr. Ser. 102 61Google Scholar

    [12]

    Hanson W B, Zuccaro D R, Lippincott C R, Sanatani S 1973 Radio Sci. 8 333Google Scholar

    [13]

    郑香脂, 张爱兵, 关燚炳, 刘超, 孙越强, 王文静, 田峥, 孔令高, 丁建京 2017 物理学报 66 209401Google Scholar

    Zheng X Z, Zhang A B, Guan Y B, Liu C, Sun Y Q, Wang W J, Tian Z, Kong L G, Ding J J 2017 Acta Phys. Sin. 66 209401Google Scholar

    [14]

    Zuccaro D R, Holt B J 1982 J. Geophys. Res. 87 8327Google Scholar

    [15]

    Knudsen D J, Burchill J K, Buchert S C, Eriksson A I, Gill R, Wahlund J E, Åhlen L, Smith M, Moffat B 2017 J. Geophys. Res. Space Phys. 122 2655Google Scholar

    [16]

    Knudsen D J, Burchill J K, Cameron T G, Enno G A, Howarth A, Yau A W 2015 Space Sci. Rev. 189 65Google Scholar

    [17]

    Knudsen D J, Burchill J K, Berg K, Cameron T, Enno G A, Marcellus C G, King E P, Wevers I, King R A 2003 Rev. Sci. Instrum. 74 202Google Scholar

  • [1] 刘云, 王文海, 贺德晶, 周勇壮, 沈咏, 邹宏新. 中国空间站冷原子光钟激光系统. 物理学报, 2023, 72(18): 184202. doi: 10.7498/aps.72.20230412
    [2] 李杰, 郑乐, 董攀, 龙继东, 王韬, 刘飞翔. 含氘电极真空弧等离子体空间分布特性诊断研究. 物理学报, 2022, 71(4): 042901. doi: 10.7498/aps.71.20211835
    [3] 李杰, 郑乐, 董攀, 龙继东, 王韬, 刘飞翔. 含氘电极真空弧等离子体空间分布特性诊断研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211835
    [4] 李新霞, 李国壮, 刘洪波. 中国聚变工程实验堆等离子体螺旋波阻尼系数的研究. 物理学报, 2020, 69(14): 145201. doi: 10.7498/aps.69.20200222
    [5] 刘超, 关燚炳, 张爱兵, 郑香脂, 孙越强. 电磁监测试验卫星朗缪尔探针电离层探测技术. 物理学报, 2016, 65(18): 189401. doi: 10.7498/aps.65.189401
    [6] 李宏伟, 韩建伟, 蔡明辉, 吴逢时, 张振龙. 激光诱导等离子体模拟微小空间碎片撞击诱发放电研究. 物理学报, 2014, 63(11): 119601. doi: 10.7498/aps.63.119601
    [7] 蔡明辉, 吴逢时, 李宏伟, 韩建伟. 空间微小碎片超高速撞击诱发的等离子体特性研究. 物理学报, 2014, 63(1): 019401. doi: 10.7498/aps.63.019401
    [8] 高勋, 杜闯, 李丞, 刘潞, 宋超, 郝作强, 林景全. 基于飞秒激光等离子体丝诱导击穿光谱探测土壤重金属Cr元素含量. 物理学报, 2014, 63(9): 095203. doi: 10.7498/aps.63.095203
    [9] 黄建国, 易忠, 孟立飞, 赵华, 刘业楠. 空间站快速充电事件的机理研究. 物理学报, 2013, 62(9): 099401. doi: 10.7498/aps.62.099401
    [10] 陈丽娟, 鲁世平, 莫嘉琪. 磁层-电离层耦合过程中等离子体粒子运动的周期轨. 物理学报, 2013, 62(9): 090201. doi: 10.7498/aps.62.090201
    [11] 郭凯敏, 高勋, 薛念亮, 赵振明, 李海军, 鲁毅, 林景全. 飞秒激光等离子体单丝导电性能的空间分辨研究. 物理学报, 2011, 60(10): 105203. doi: 10.7498/aps.60.105203
    [12] 龙拥兵, 张剑, 汪国平. 基于表面等离子体激元共振的飞秒抽运探测技术研究. 物理学报, 2009, 58(11): 7722-7726. doi: 10.7498/aps.58.7722
    [13] 张 民, 吴振森. 脉冲波在空间等离子体介质中传播的矩分析及其应用. 物理学报, 2007, 56(10): 5937-5944. doi: 10.7498/aps.56.5937
    [14] 郝作强, 张 杰, 俞 进, 张 喆, 仲佳勇, 臧充之, 金 展, 王兆华, 魏志义. 空气中激光等离子体通道的荧光探测和声学诊断两种方法的比较实验研究. 物理学报, 2006, 55(1): 299-303. doi: 10.7498/aps.55.299
    [15] 宋法伦, 曹金祥, 王 舸. 弱电离等离子体对电磁波吸收的物理模型和数值求解. 物理学报, 2005, 54(2): 807-811. doi: 10.7498/aps.54.807
    [16] 顾震宇, 季沛勇. 等离子体密度对多光子电离的影响. 物理学报, 2002, 51(5): 1022-1025. doi: 10.7498/aps.51.1022
    [17] 黄朝松, 李均, M. C. KELLEY. 电离层等离子体交换不稳定性与大气重力波的耦合. 物理学报, 1994, 43(2): 239-247. doi: 10.7498/aps.43.239
    [18] 王龙, 罗耀全, 李赞良, 王文书, 杨思泽, 李文莱, 戚霞枝, 赵华. 托卡马克微波预电离等离子体. 物理学报, 1989, 38(5): 714-721. doi: 10.7498/aps.38.714
    [19] 冯贤平, 徐至展, 江志明, 张正泉, 陈时胜, 范品忠, 田莉, 周智锦. 等离子体中高阶电离离子的空间分布. 物理学报, 1988, 37(7): 1183-1187. doi: 10.7498/aps.37.1183
    [20] 陈茂康, 张煦. 研究中国天空电离层之初草报告. 物理学报, 1935, 1(3): 92-100. doi: 10.7498/aps.1.92
计量
  • 文章访问数:  2510
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-07
  • 修回日期:  2022-11-02
  • 上网日期:  2022-12-09
  • 刊出日期:  2023-02-20

/

返回文章
返回