-
等离子体原位成像探测器是中国空间站的第一批舱外空间环境科学载荷, 安装在问天舱的舱外暴露平台, 将首次在空间站平台上开展电离层等离子体原位、成像、充电电位等多要素综合探测任务. 其中, 原位探测要素包括空间站轨道等离子体的密度、温度以及问天舱表面电位强度等. 成像探测要素包括离子能量、运动方向和成像时间分辨率等. 等离子体原位成像探测器采用多传感器的一体化设计, 集成了朗缪尔探针、阻滞势分析仪、参考电位计和离子成像仪等技术. 其中, 离子成像技术是首次应用于我国的空间环境探测领域. 等离子体原位成像探测技术在中国科学院国家空间科学中心定标实验室完成了测试验证, 探测器已随问天舱成功发射, 即将开展中低纬电离层的精细化探测, 为完善空间站轨道电离层模型提供等离子体探测数据. 通过探测累积长周期的充电电位数据, 为研究等离子体对空间站的充电效应, 促进空间站充电评估体系的建立提供支持.
In order to meet the needs of ionospheric research and monitoring of space station charging, the technology of plasma in-situ imaging detection is studied. The plasma in-situ imaging detector is one of the first outside scientific payloads of the Chinese space station to detect the space environment. It is installed on the extravehicular platform of the Wentian module, and will carry out multi-element comprehensive detection of ionospheric plasma, including in-situ, imaging, and charging potential. The refined detection data of the low latitude ionosphere will provide plasma parameters for improving the orbital ionospheric model of the space station. And the long-term charging potential data are collected to support the studying of the charging effect of plasma on the space station and promoting the establishment of the space station charging evaluation system. The plasma in-situ imaging detector integrates Langmuir probe, retarding potential analyzer, ion drift meter, reference potentiometer, ion imaging technology, etc. Electron density and electron temperature are measured by Langmuir probe. Ion composition,ion density,ion temperature, and ion drift velocity are measured by retarding potential analyzer and ion drift meter. The ion imaging parameters are obtained by ion imager. The reference potential sensor is available to provide the measurements of charging potential of Wentian module. The Langmuir probe sensor inherits the design of the Langmuir probe sensor of CSES (Zhangheng-1 satellite). The retarding potential analyzer and ion drift meter also inherit the design of CSES (Zhangheng-1 satellite), and improve the design of grid voltage and collector voltage which can be adjusted adaptively according to on orbit state. The ion imager consists of an electrostatic deflection module, a Whalen analyzer and an imaging module. The ion imaging technology is for the first time applied to the field of space environment detection in China. The plasma in-situ imaging detector is tested and calibrated to verify the performance at the National Space Science Center of the Chinese Academy of Sciences. when this paper is submitted, the detector mounted on Wentian module has been successfully launched. Next, the detector will be assembled by astronauts inside the capsule using external interfaces . Then, the detector will be grabbed by the robotic arm and installed on the extravehicular experimental platform to start a long-term exploration mission. -
Keywords:
- china space station /
- space plasma /
- ion imager /
- in-situ detection
[1] 王成, 赵海生, 刘波, 陈亮, 肖鹏, 刘露, 刘敏, 眭晓虹, 郭午龙 2022 中国空间科学技术 42 114Google Scholar
Wang C, Zhao H S, LIU B, Chen L, Xiao P, Liu L, Liu m, Sui X H, Guo W L 2022 Chin. Space Sci. Technol. 42 114Google Scholar
[2] 刘琨, 袁志刚, 周晨, 赵家奇, 朱庆林, 董翔, 王海宁, 盛冬生 2021 电波科学学报 36 692Google Scholar
Liu K, Yuan Z G, Zhou C, Zhao J Q, Zhu Q L, Dong X, Wang H N, Sheng D S 2021 Chin. J. Radio Sci. 36 692Google Scholar
[3] 刘传保 2013 航天电子对抗 29 47
Liu C B 2013 Aerosp. Electron. Warfare 29 47
[4] Craven P D, Kenneth H W, Joseph I M, Victoria N C, Todd A S, Jason A V, Dale C F, Linda N P 2009 47th Aerospace Sciences Meeting Orlando, USA, January 5–8, 2009 p119
[5] Steve K, Terri C, William H, William S, Megan H, Gary D, Benjamin G, Jerry V 2020 J. Space Saf. Eng. 7 461Google Scholar
[6] 黄建国, 易忠, 孟立飞, 赵华, 刘业楠 2013 物理学报 62 229401Google Scholar
Huang J G, Yi Z, Menf L F, Zhao H, Liu Y N 2013 Acta Phys. Sin. 62 229401Google Scholar
[7] Mott-Smith H M,Irving Langmuir 1926 Phys. Rev. 28 727Google Scholar
[8] Liu C, Guan Y B, Zheng X Z, Zhang A B, Piero D, Sun Y Q 2019 Sci. Chin. Technol. Sci. 62 829Google Scholar
[9] 刘超, 关燚炳, 张爱兵, 郑香脂, 孙越强 2016 物理学报 65 189401Google Scholar
Liu C, Guan Y B, Zhang A B, Zheng X Z, Sun Y Q 2016 Acta Phys Sin. 65 189401Google Scholar
[10] 郑香脂, 张爱兵, 关燚炳, 刘超, 王文静, 田峥, 孔令高, 孙越强 2017 物理学报 66 079401Google Scholar
Zheng X Z, Zhang A B, Guan Y B, Liu C, Wang W J, Tian Z, Kong L G, Sun Y Q 2017 Acta Phys Sin. 66 079401Google Scholar
[11] Heelis R A, Hanson W B 1998 Geophys. Monogr. Ser. 102 61Google Scholar
[12] Hanson W B, Zuccaro D R, Lippincott C R, Sanatani S 1973 Radio Sci. 8 333Google Scholar
[13] 郑香脂, 张爱兵, 关燚炳, 刘超, 孙越强, 王文静, 田峥, 孔令高, 丁建京 2017 物理学报 66 209401Google Scholar
Zheng X Z, Zhang A B, Guan Y B, Liu C, Sun Y Q, Wang W J, Tian Z, Kong L G, Ding J J 2017 Acta Phys. Sin. 66 209401Google Scholar
[14] Zuccaro D R, Holt B J 1982 J. Geophys. Res. 87 8327Google Scholar
[15] Knudsen D J, Burchill J K, Buchert S C, Eriksson A I, Gill R, Wahlund J E, Åhlen L, Smith M, Moffat B 2017 J. Geophys. Res. Space Phys. 122 2655Google Scholar
[16] Knudsen D J, Burchill J K, Cameron T G, Enno G A, Howarth A, Yau A W 2015 Space Sci. Rev. 189 65Google Scholar
[17] Knudsen D J, Burchill J K, Berg K, Cameron T, Enno G A, Marcellus C G, King E P, Wevers I, King R A 2003 Rev. Sci. Instrum. 74 202Google Scholar
-
表 1 任务要求的性能参数
Table 1. Performances of mission requirements.
参数类型 指标 等离子体
原位探测离子成分 H+, He+, O+ 密度范围/cm–3 1×103—1×107 密度测量相对精度 优于10% 温度范围/K 500—10000 温度测量相对精度 优于10% 电位范围/V –300— +300 离子漂移速度/(km·s–1) –3— +3 离子漂移速度
测量精度/(m·s–1)横向: 优于20
纵向: 优于50等离子体离子
成像探测能量范围/eV 0.1 — 204 能量分辨率 ≤15% 视场 ≥360°×94° 角度分辨率 ≤2°×3° 时间分辨率/ms ≤45 表 2 定标测试系统性能参数
Table 2. Performances of the calibration system.
离子参数 性能 能量范围/eV 50 —30000 能量散度 ≤2% 通量范围/(cm–2·s–1) 103—1013 束斑直径/mm ≥70 转台定位精度/mm ≤0.1 转台角度精度 ≤0.1° 磁场控制范围/nT ≤500 真空度/Pa ≥5×10–5 -
[1] 王成, 赵海生, 刘波, 陈亮, 肖鹏, 刘露, 刘敏, 眭晓虹, 郭午龙 2022 中国空间科学技术 42 114Google Scholar
Wang C, Zhao H S, LIU B, Chen L, Xiao P, Liu L, Liu m, Sui X H, Guo W L 2022 Chin. Space Sci. Technol. 42 114Google Scholar
[2] 刘琨, 袁志刚, 周晨, 赵家奇, 朱庆林, 董翔, 王海宁, 盛冬生 2021 电波科学学报 36 692Google Scholar
Liu K, Yuan Z G, Zhou C, Zhao J Q, Zhu Q L, Dong X, Wang H N, Sheng D S 2021 Chin. J. Radio Sci. 36 692Google Scholar
[3] 刘传保 2013 航天电子对抗 29 47
Liu C B 2013 Aerosp. Electron. Warfare 29 47
[4] Craven P D, Kenneth H W, Joseph I M, Victoria N C, Todd A S, Jason A V, Dale C F, Linda N P 2009 47th Aerospace Sciences Meeting Orlando, USA, January 5–8, 2009 p119
[5] Steve K, Terri C, William H, William S, Megan H, Gary D, Benjamin G, Jerry V 2020 J. Space Saf. Eng. 7 461Google Scholar
[6] 黄建国, 易忠, 孟立飞, 赵华, 刘业楠 2013 物理学报 62 229401Google Scholar
Huang J G, Yi Z, Menf L F, Zhao H, Liu Y N 2013 Acta Phys. Sin. 62 229401Google Scholar
[7] Mott-Smith H M,Irving Langmuir 1926 Phys. Rev. 28 727Google Scholar
[8] Liu C, Guan Y B, Zheng X Z, Zhang A B, Piero D, Sun Y Q 2019 Sci. Chin. Technol. Sci. 62 829Google Scholar
[9] 刘超, 关燚炳, 张爱兵, 郑香脂, 孙越强 2016 物理学报 65 189401Google Scholar
Liu C, Guan Y B, Zhang A B, Zheng X Z, Sun Y Q 2016 Acta Phys Sin. 65 189401Google Scholar
[10] 郑香脂, 张爱兵, 关燚炳, 刘超, 王文静, 田峥, 孔令高, 孙越强 2017 物理学报 66 079401Google Scholar
Zheng X Z, Zhang A B, Guan Y B, Liu C, Wang W J, Tian Z, Kong L G, Sun Y Q 2017 Acta Phys Sin. 66 079401Google Scholar
[11] Heelis R A, Hanson W B 1998 Geophys. Monogr. Ser. 102 61Google Scholar
[12] Hanson W B, Zuccaro D R, Lippincott C R, Sanatani S 1973 Radio Sci. 8 333Google Scholar
[13] 郑香脂, 张爱兵, 关燚炳, 刘超, 孙越强, 王文静, 田峥, 孔令高, 丁建京 2017 物理学报 66 209401Google Scholar
Zheng X Z, Zhang A B, Guan Y B, Liu C, Sun Y Q, Wang W J, Tian Z, Kong L G, Ding J J 2017 Acta Phys. Sin. 66 209401Google Scholar
[14] Zuccaro D R, Holt B J 1982 J. Geophys. Res. 87 8327Google Scholar
[15] Knudsen D J, Burchill J K, Buchert S C, Eriksson A I, Gill R, Wahlund J E, Åhlen L, Smith M, Moffat B 2017 J. Geophys. Res. Space Phys. 122 2655Google Scholar
[16] Knudsen D J, Burchill J K, Cameron T G, Enno G A, Howarth A, Yau A W 2015 Space Sci. Rev. 189 65Google Scholar
[17] Knudsen D J, Burchill J K, Berg K, Cameron T, Enno G A, Marcellus C G, King E P, Wevers I, King R A 2003 Rev. Sci. Instrum. 74 202Google Scholar
计量
- 文章访问数: 4515
- PDF下载量: 88
- 被引次数: 0