搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种低喷气量微气室喷嘴在激光尾场加速中的应用

张晓辉 吴玉迟 朱斌 王少义 闫永宏 谭放 于明海 杨月 李纲 张杰 温家星 周维民 粟敬钦 谷渝秋

引用本文:
Citation:

一种低喷气量微气室喷嘴在激光尾场加速中的应用

张晓辉, 吴玉迟, 朱斌, 王少义, 闫永宏, 谭放, 于明海, 杨月, 李纲, 张杰, 温家星, 周维民, 粟敬钦, 谷渝秋

Application of low flow rate micro gas cell nozzle in laser wakefield acceleration

Zhang Xiao-Hui, Wu Yu-Chi, Zhu Bin, Wang Shao-Yi, Yan Yong-Hong, Tan Fang, Yu Ming-Hai, Yang Yue, Li Gang, Zhang Jie, Wen Jia-Xing, Zhou Wei-Min, Su Jing-Qin, Gu Yu-Qiu
PDF
HTML
导出引用
  • 激光尾场加速是一种利用超强飞秒激光与气体靶作用加速电子的新型加速技术, 经过40多年的发展已经日益成熟, 但是重复频率相比传统加速器还有很大的差距. 高重复频率加速是未来激光尾场加速的一个重要发展方向, 届时气体靶给真空系统带来的负载将不可忽视, 这可能会成为限制重复频率的重要因素. 本文设计了一种应用于中小规模激光器的微气室喷嘴, 并通过三维流体模拟对比了这种喷嘴和常用的超音速喷嘴的喷气量差异, 证明它不仅能够产生和超音速喷嘴类似的密度分布, 还能够大幅降低喷气量, 从而减小真空系统的负载, 提高重频的上限. 此外, 把这种微气室喷嘴应用于激光尾场加速实验中, 在多条件下产生了稳定性很好的电子束. 这个工作将为高重频、高稳定性的尾场加速做出贡献.
    After forty-year tremendous advances, laser wakefield acceleration (LWFA), in which an ultra-intense femtosecond laser interacts with a gas target to produce energetic electrons, is becoming more and more mature. Acceleration with a high repetition rate will be an important topic in the near future. When operating at a high repetition rate, the influence of the gas load on the vacuum system cannot be neglected. Among the widely used gas targets, gas cells have a lower flow rate than supersonic gas nozzles. However, most of gas cells are several centimeters long, unsuitable for a moderate-size laser facility. In this work, we design a kind of micro gas cell with a sub-centimeter length. The flow rate of the micro gas cell and the supersonic nozzle are compared by hydromechanics simulations. Comparing with the supersonic nozzle, the flow rate of the micro gas cell is reduced by 97%. Moreover, the gas cell sustains a longer flattop region. The reduced flow rate is attributed to two reasons. The first reason is that the area of the nozzle exit decreases significantly. In the case of the supersonic nozzle, the laser interacts with the gas jet outside the nozzle exit. Therefore, the exit size is determined by the interaction length. In the case of the micro gas cell, the laser interacts with the gas inside the gas cell. The exit only needs to be larger than the laser focal, which is much smaller than the interaction length. The second reason is that the velocity of the gas jet decreases. When using a supersonic nozzle, the velocity at the nozzle exit must be high enough to generate a flattop density distribution, which is required by LWFA. As a comparison, in the micro gas cell, the gas is confined by the cell wall. As a consequence, the gas velocity has little influence on the density distribution inside the cell. By changing the inner radius of the cell, 1–4 mm-long flattop regions can be generated while keeping a low flow rate. Experiments using the micro gas cell are conducted on a 45 TW femtosecond laser facility at the Laser Fusion Research Center. The stable electron beams with maximum energy of 250 MeV are generated. This study will contribute to the investigation of stable and high-frequency laser wakefield acceleration.
      通信作者: 谷渝秋, yqgu@caep.cn
    • 基金项目: 等离子体物理重点实验室基金(批准号: 6142A04210101, 6142A04200103)和国家自然科学基金(批准号: 12004353, 11975214, 11991071, 11905202, 12175212)资助的课题.
      Corresponding author: Gu Yu-Qiu, yqgu@caep.cn
    • Funds: Project supported by the Foundation of Science and Technology on Plasma Physics Laboratory, China (Grant Nos. 6142A04210101, 6142A04200103) and the National Natural Science Foundation of China (Grant Nos. 12004353, 11975214, 11991071, 11905202, 12175212).
    [1]

    Tajima T, Dawson J 1979 Phys. Rev. Lett. 43 267Google Scholar

    [2]

    Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F, Malka V 2004 Nature 431 541Google Scholar

    [3]

    Geddes C, Toth C, Van Tilborg J, Esarey E, Schroeder C, Bruhwiler D, Nieter C, Cary J, Leemans W 2004 Nature 431 538Google Scholar

    [4]

    Mangles S, Murphy C, Najmudin Z, Thomas A, Collier J, Dangor A, Divall E, Foster P, Gallacher J, Hooker C 2004 Nature 431 535Google Scholar

    [5]

    Kim H T, Pae K H, Cha H J, Kim I J, Yu T J, Sung J H, Lee S K, Jeong T M, Lee J 2013 Phys. Rev. Lett. 111 165002Google Scholar

    [6]

    Wang X, Zgadzaj R, Fazel N, Li Z, Yi S A, Zhang X, Henderson W, Chang Y Y, Korzekwa R, Tsai H E, Pai C H, Quevedo H, Dyer G, Gaul E, Martinez M, Bernstein A C, Borger T, Spinks M, Donovan M, Khudik V, Shvets G, Ditmire T, Downer M C 2013 Nat. Commun. 4 1988Google Scholar

    [7]

    Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Tóth C, Daniels J, Mittelberger D E, Bulanov S S 2014 Phys. Rev. Lett. 113 245002Google Scholar

    [8]

    Kim H T, Pathak V B, Hong Pae K, Lifschitz A, Sylla F, Shin J H, Hojbota C, Lee S K, Sung J H, Lee H W, Guillaume E, Thaury C, Nakajima K, Vieira J, Silva L O, Malka V, Nam C H 2017 Sci. Rep. 7 10203Google Scholar

    [9]

    Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, de Raadt T C H, Steinke S, Bin J H, Bulanov S S, van Tilborg J, Geddes C G R, Schroeder C B, Tóth C, Esarey E, Swanson K, Fan-Chiang L, Bagdasarov G, Bobrova N, Gasilov V, Korn G, Sasorov P, Leemans W P 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [10]

    Wang W, Feng K, Ke L, Yu C, Xu Y, Qi R, Chen Y, Qin Z, Zhang Z, Fang M, Liu J, Jiang K, Wang H, Wang C, Yang X, Wu F, Leng Y, Liu J, Li R, Xu Z 2021 Nature 595 516Google Scholar

    [11]

    Wiggins S M, Issac R C, Welsh G H, Brunetti E, Shanks R P, Anania M P, Cipiccia S, Manahan G G, Aniculaesei C, Ersfeld B, Islam M R, Burgess R T L, Vieux G, Gillespie W A, MacLeod A M, van der Geer S B, de Loos M J, Jaroszynski D A 2010 Plasma Phys. Contr. F 52 124032Google Scholar

    [12]

    Pollock B B, Clayton C E, Ralph J E, Albert F, Davidson A, Divol L, Filip C, Glenzer S H, Herpoldt K, Lu W, Marsh K A, Meinecke J, Mori W B, Pak A, Rensink T C, Ross J S, Shaw J, Tynan G R, Joshi C, Froula D H 2011 Phys. Rev. Lett. 107 045001Google Scholar

    [13]

    Buck A, Wenz J, Xu J, Khrennikov K, Schmid K, Heigoldt M, Mikhailova J M, Geissler M, Shen B, Krausz F, Karsch S, Veisz L 2013 Phys. Rev. Lett. 110 185006Google Scholar

    [14]

    Maier A R, Delbos N M, Eichner T, Hübner L, Jalas S, Jeppe L, Jolly S W, Kirchen M, Leroux V, Messner P, Schnepp M, Trunk M, Walker P A, Werle C, Winkler P 2020 Phys. Rev. X 10 031039Google Scholar

    [15]

    Schmid K, Veisz L, Tavella F, Benavides S, Tautz R, Herrmann D, Buck A, Hidding B, Marcinkevicius A, Schramm U 2009 Phys. Rev. Lett. 102 124801Google Scholar

    [16]

    Cole J M, Symes D R, Lopes N C, Wood J C, Poder K, Alatabi S, Botchway S W, Foster P S, Gratton S, Johnson S, Kamperidis C, Kononenko O, De Lazzari M, Palmer C A J, Rusby D, Sanderson J, Sandholzer M, Sarri G, Szoke-Kovacs Z, Teboul L, Thompson J M, Warwick J R, Westerberg H, Hill M A, Norris D P, Mangles S P D, Najmudin Z 2018 Proc. Natl. Acad. Sci. USA 115 6335Google Scholar

    [17]

    Wenz J, Schleede S, Khrennikov K, Bech M, Thibault P, Heigoldt M, Pfeiffer F, Karsch S 2015 Nat. commun. 6 7568Google Scholar

    [18]

    Wu Y, Zhu B, Li G, Zhang X, Yu M, Dong K, Zhang T, Yang Y, Bi B, Yang J 2018 Sci. Rep. 8 15888Google Scholar

    [19]

    Schmid K, Veisz L 2012 Rev. Sci. Instrum. 83 053304Google Scholar

    [20]

    Döpp A, Guillaume E, Thaury C, Gautier J, Ta Phuoc K, Malka V 2016 Rev. Sci. Instrum. 87 073505Google Scholar

    [21]

    Osterhoff J, Popp A, Major Z, Marx B, Rowlands-Rees T, Fuchs M, Geissler M, Hörlein R, Hidding B, Becker S 2008 Phys. Rev. Lett. 101 085002Google Scholar

    [22]

    Clayton C E, Ralph J, Albert F, Fonseca R, Glenzer S, Joshi C, Lu W, Marsh K, Martins S F, Mori W B 2010 Phys. Rev. Lett. 105 105003Google Scholar

    [23]

    Liu J, Xia C, Wang W, Lu H, Wang C, Deng A, Li W, Zhang H, Liang X, Leng Y 2011 Phys. Rev. Lett. 107 035001Google Scholar

  • 图 1  超音速喷嘴(a)与微气室喷嘴(b)截面示意图

    Fig. 1.  Cross sections of the supersonic nozzle (a) and the micro gas cell (b).

    图 2  超音速喷嘴(a)与微气室(b)气流密度分布的模拟结果; (c)比较了两个喷嘴在激光传播方向上((a)和(b)中黑色虚线位置)的分子密度分布

    Fig. 2.  Density distribution of the supersonic nozzle (a) and the micro gas cell (b); (c) the molecular number density along the laser propagation direction (dash lines) are compared in (c).

    图 3  超音速喷嘴出口(a), (b)和微气室喷嘴内壁锥孔(c), (d)的气体密度(a), (c)和流速(b), (d)分布

    Fig. 3.  Density (a), (c) and velocity (b), (d) distribution at the exit of the supersonic nozzle (a), (b) and the internal interface of the micro gas cell exit (c), (d).

    图 4  不同内径的微气室喷嘴中N2的分子密度分布

    Fig. 4.  Molecular number density in micro gas cells of different inside diameters.

    图 5  采用内径1 mm的微气室喷嘴在分别在5 kPa (a)和8 kPa (b)下连续10发获得的电子能谱

    Fig. 5.  Electron sepctra in 10 consecutive shots using a 1 mm micro gas cell backing at 5 kPa (a) and 8 kPa (b).

    表 1  使用4 mm微气室不同工作频率下的真空度

    Table 1.  Vaccum at different repetition rates using 4 mm micro gas cell.

    重复频率/Hz
    12510
    真空度最大值/(10–3 Pa)4.74.66.710
    下载: 导出CSV
  • [1]

    Tajima T, Dawson J 1979 Phys. Rev. Lett. 43 267Google Scholar

    [2]

    Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F, Malka V 2004 Nature 431 541Google Scholar

    [3]

    Geddes C, Toth C, Van Tilborg J, Esarey E, Schroeder C, Bruhwiler D, Nieter C, Cary J, Leemans W 2004 Nature 431 538Google Scholar

    [4]

    Mangles S, Murphy C, Najmudin Z, Thomas A, Collier J, Dangor A, Divall E, Foster P, Gallacher J, Hooker C 2004 Nature 431 535Google Scholar

    [5]

    Kim H T, Pae K H, Cha H J, Kim I J, Yu T J, Sung J H, Lee S K, Jeong T M, Lee J 2013 Phys. Rev. Lett. 111 165002Google Scholar

    [6]

    Wang X, Zgadzaj R, Fazel N, Li Z, Yi S A, Zhang X, Henderson W, Chang Y Y, Korzekwa R, Tsai H E, Pai C H, Quevedo H, Dyer G, Gaul E, Martinez M, Bernstein A C, Borger T, Spinks M, Donovan M, Khudik V, Shvets G, Ditmire T, Downer M C 2013 Nat. Commun. 4 1988Google Scholar

    [7]

    Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Tóth C, Daniels J, Mittelberger D E, Bulanov S S 2014 Phys. Rev. Lett. 113 245002Google Scholar

    [8]

    Kim H T, Pathak V B, Hong Pae K, Lifschitz A, Sylla F, Shin J H, Hojbota C, Lee S K, Sung J H, Lee H W, Guillaume E, Thaury C, Nakajima K, Vieira J, Silva L O, Malka V, Nam C H 2017 Sci. Rep. 7 10203Google Scholar

    [9]

    Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, de Raadt T C H, Steinke S, Bin J H, Bulanov S S, van Tilborg J, Geddes C G R, Schroeder C B, Tóth C, Esarey E, Swanson K, Fan-Chiang L, Bagdasarov G, Bobrova N, Gasilov V, Korn G, Sasorov P, Leemans W P 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [10]

    Wang W, Feng K, Ke L, Yu C, Xu Y, Qi R, Chen Y, Qin Z, Zhang Z, Fang M, Liu J, Jiang K, Wang H, Wang C, Yang X, Wu F, Leng Y, Liu J, Li R, Xu Z 2021 Nature 595 516Google Scholar

    [11]

    Wiggins S M, Issac R C, Welsh G H, Brunetti E, Shanks R P, Anania M P, Cipiccia S, Manahan G G, Aniculaesei C, Ersfeld B, Islam M R, Burgess R T L, Vieux G, Gillespie W A, MacLeod A M, van der Geer S B, de Loos M J, Jaroszynski D A 2010 Plasma Phys. Contr. F 52 124032Google Scholar

    [12]

    Pollock B B, Clayton C E, Ralph J E, Albert F, Davidson A, Divol L, Filip C, Glenzer S H, Herpoldt K, Lu W, Marsh K A, Meinecke J, Mori W B, Pak A, Rensink T C, Ross J S, Shaw J, Tynan G R, Joshi C, Froula D H 2011 Phys. Rev. Lett. 107 045001Google Scholar

    [13]

    Buck A, Wenz J, Xu J, Khrennikov K, Schmid K, Heigoldt M, Mikhailova J M, Geissler M, Shen B, Krausz F, Karsch S, Veisz L 2013 Phys. Rev. Lett. 110 185006Google Scholar

    [14]

    Maier A R, Delbos N M, Eichner T, Hübner L, Jalas S, Jeppe L, Jolly S W, Kirchen M, Leroux V, Messner P, Schnepp M, Trunk M, Walker P A, Werle C, Winkler P 2020 Phys. Rev. X 10 031039Google Scholar

    [15]

    Schmid K, Veisz L, Tavella F, Benavides S, Tautz R, Herrmann D, Buck A, Hidding B, Marcinkevicius A, Schramm U 2009 Phys. Rev. Lett. 102 124801Google Scholar

    [16]

    Cole J M, Symes D R, Lopes N C, Wood J C, Poder K, Alatabi S, Botchway S W, Foster P S, Gratton S, Johnson S, Kamperidis C, Kononenko O, De Lazzari M, Palmer C A J, Rusby D, Sanderson J, Sandholzer M, Sarri G, Szoke-Kovacs Z, Teboul L, Thompson J M, Warwick J R, Westerberg H, Hill M A, Norris D P, Mangles S P D, Najmudin Z 2018 Proc. Natl. Acad. Sci. USA 115 6335Google Scholar

    [17]

    Wenz J, Schleede S, Khrennikov K, Bech M, Thibault P, Heigoldt M, Pfeiffer F, Karsch S 2015 Nat. commun. 6 7568Google Scholar

    [18]

    Wu Y, Zhu B, Li G, Zhang X, Yu M, Dong K, Zhang T, Yang Y, Bi B, Yang J 2018 Sci. Rep. 8 15888Google Scholar

    [19]

    Schmid K, Veisz L 2012 Rev. Sci. Instrum. 83 053304Google Scholar

    [20]

    Döpp A, Guillaume E, Thaury C, Gautier J, Ta Phuoc K, Malka V 2016 Rev. Sci. Instrum. 87 073505Google Scholar

    [21]

    Osterhoff J, Popp A, Major Z, Marx B, Rowlands-Rees T, Fuchs M, Geissler M, Hörlein R, Hidding B, Becker S 2008 Phys. Rev. Lett. 101 085002Google Scholar

    [22]

    Clayton C E, Ralph J, Albert F, Fonseca R, Glenzer S, Joshi C, Lu W, Marsh K, Martins S F, Mori W B 2010 Phys. Rev. Lett. 105 105003Google Scholar

    [23]

    Liu J, Xia C, Wang W, Lu H, Wang C, Deng A, Li W, Zhang H, Liang X, Leng Y 2011 Phys. Rev. Lett. 107 035001Google Scholar

  • [1] 贺亮, 彭雪芳, 沈小雨, 朱仁江, 王涛, 蒋丽丹, 佟存柱, 宋晏蓉, 张鹏. 低重复频率被动锁模半导体碟片激光器. 物理学报, 2024, 73(12): 124205. doi: 10.7498/aps.73.20240441
    [2] 郑立, 田文龙, 马骏逸, 于洋, 徐晓东, 韩海年, 魏志义, 朱江峰. GHz重复频率亚百飞秒克尔透镜锁模Yb:CaYAlO4激光器. 物理学报, 2023, 72(6): 064202. doi: 10.7498/aps.72.20222297
    [3] 黄梅婷, 姜银花, 陈钰琦, 李润华. 铋黄铜中微量元素的高重复频率激光剥离-火花诱导击穿光谱定量分析. 物理学报, 2021, 70(10): 104206. doi: 10.7498/aps.70.20202018
    [4] 叶翰晟, 谷渝秋, 黄文会, 吴玉迟, 谭放, 张晓辉, 王少义. 基于激光尾场加速的自反射式全光汤姆孙散射的参数优化. 物理学报, 2021, 70(8): 085204. doi: 10.7498/aps.70.20210549
    [5] 杨超, 顾澄琳, 刘洋, 王超, 李江, 李文雪. 双重复频率锁模Yb:YAG陶瓷激光器. 物理学报, 2018, 67(9): 094206. doi: 10.7498/aps.67.20172345
    [6] 张天奎, 于明海, 董克攻, 吴玉迟, 杨靖, 陈佳, 卢峰, 李纲, 朱斌, 谭放, 王少义, 闫永宏, 谷渝秋. 激光高能X射线成像中探测器表征与电子影响研究. 物理学报, 2017, 66(24): 245201. doi: 10.7498/aps.66.245201
    [7] 樊仲维, 邱基斯, 唐熊忻, 白振岙, 康治军, 葛文琦, 王昊成, 刘昊, 刘悦亮. 用于空间碎片探测的百赫兹3.31 J高光束质量全固态Nd:YAG激光器. 物理学报, 2017, 66(5): 054205. doi: 10.7498/aps.66.054205
    [8] 邱基斯, 唐熊忻, 樊仲维, 陈艳中, 葛文琦, 王昊成, 刘昊. 用于汤姆孙散射诊断的高重频高光束质量焦耳级Nd:YAG纳秒激光器. 物理学报, 2016, 65(15): 154204. doi: 10.7498/aps.65.154204
    [9] 彭汉, 刘彬, 付松年, 张敏明, 刘德明. 高速线性光采样用被动锁模光纤激光器重复频率优化. 物理学报, 2015, 64(13): 134206. doi: 10.7498/aps.64.134206
    [10] 刘欢, 巩马理, 曹士英, 林百科, 方占军. 303MHz高重复频率掺Er光纤飞秒激光器. 物理学报, 2015, 64(11): 114210. doi: 10.7498/aps.64.114210
    [11] 窦志远, 田金荣, 李克轩, 于振华, 胡梦婷, 霍明超, 宋晏蓉. 高重复频率全光纤被动锁模掺铒光纤激光器. 物理学报, 2015, 64(6): 064206. doi: 10.7498/aps.64.064206
    [12] 汪超, 韦辉, 王江峰, 姜有恩, 范薇, 李学春. 激光二极管抽运的高重频高平均功率Nd:YAG激光器. 物理学报, 2014, 63(22): 224204. doi: 10.7498/aps.63.224204
    [13] 韩敬华, 冯国英, 杨李茗, 张秋慧, 傅玉青, 牛瑞华, 朱启华, 谢旭东, 周寿桓. 高重复频率激光脉冲光束大小对吸收玻璃损伤特征的影响. 物理学报, 2011, 60(2): 028106. doi: 10.7498/aps.60.028106
    [14] 刘华刚, 胡明列, 刘博文, 宋有建, 柴路, 王清月. 高功率高重复频率多波长飞秒激光系统的研究. 物理学报, 2010, 59(6): 3979-3985. doi: 10.7498/aps.59.3979
    [15] 赵研英, 韩海年, 滕浩, 魏志义. 采用多通腔望远镜谐振腔结构的10MHz重复频率飞秒钛宝石激光器特性研究. 物理学报, 2009, 58(3): 1709-1714. doi: 10.7498/aps.58.1709
    [16] 严雄伟, 於海武, 曹丁象, 李明中, 蒋东镔, 蒋新颖, 段文涛, 徐美健. 脉冲储能型重复频率Yb:YAG片状激光放大器ASE效应研究. 物理学报, 2009, 58(6): 4230-4238. doi: 10.7498/aps.58.4230
    [17] 黄琳, 代志勇, 刘永智. 不同脉冲重复频率下抽运方式对全光纤声光调Q激光器性能的影响. 物理学报, 2009, 58(10): 6992-6999. doi: 10.7498/aps.58.6992
    [18] 刘 军, 李小芳, 陈晓伟, 姜永亮, 李儒新, 徐至展. 1 kHz-0.1 TW高效率钛宝石激光放大器. 物理学报, 2007, 56(3): 1375-1378. doi: 10.7498/aps.56.1375
    [19] 刘艳格, 张春书, 孙婷婷, 鲁云飞, 王 志, 袁树忠, 开桂云, 董孝义. 输出平均功率大于2W的高功率、包层抽运、超短脉冲铒镱共掺光纤激光器. 物理学报, 2006, 55(9): 4679-4685. doi: 10.7498/aps.55.4679
    [20] 徐涵, 常文蔚, 银燕. 尾波场中传播的激光脉冲的频率漂移. 物理学报, 2004, 53(1): 171-175. doi: 10.7498/aps.53.171
计量
  • 文章访问数:  3404
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-26
  • 修回日期:  2022-10-28
  • 上网日期:  2022-11-11
  • 刊出日期:  2023-02-05

/

返回文章
返回