搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气光学湍流模式研究—方法和进展

吴晓庆 杨期科 黄宏华 青春 胡晓丹 王英俭

引用本文:
Citation:

大气光学湍流模式研究—方法和进展

吴晓庆, 杨期科, 黄宏华, 青春, 胡晓丹, 王英俭

Analysis of atmospheric optical turbulence model— methods and progress

Wu Xiao-Qing, Yang Qi-Ke, Huang Hong-Hua, Qing Chun, Hu Xiao-Dan, Wang Ying-Jian
PDF
HTML
导出引用
  • 分层是大气湍流特别是高空湍流显著特征. 在某一固定高度真实光学湍流$ C_n^2 $值在平均值上有1—2个量级甚至更大的起伏. 以观测数据建立的湍流廓线模式, 是一个统计平均的结果. 既不能代表某次实际大气湍流廓线的分层特征, 也没有预报功能, 不能完全满足光学工程需求. 受限于计算机的容量和速度, 无法通过DNS (direct numerical simulation)以及LES (large eddy simulation)求解Navier-Stokes方程来预报光学湍流, 解决方案是通过中尺度天气数值预报模式MM5/WRF, 预报出常规气象参数, 再由湍流参数化方案计算出$ C_n^2 $. 本文介绍了近地面层、边界层和自由大气层$ C_n^2 $预报方法和研究成果, 从湍流动能预报方程和温度脉动方差预报方程详细推导出Tatarski公式, 归纳出该公式所隐含的物理意义和适用条件. 重点介绍了神经网络预报$ C_n^2 $$ C_n^2 $估算和预报方法在南极天文选址的最新研究进展. 分析了以实验数据拟合的经验模式、建立在Kolmogorov湍流理论基础之上含有常规气象参数的参数模式、与中尺度气象模式有关的预报模式、基于数据驱动的神经网络方法等不同模式的特点和差异. 强调Kolmogorov湍流理论是现有大气光学湍流参数模式的理论基础.
    Stratification is a significant characteristic of atmospheric turbulence, especially high-altitude turbulence. At a fixed height, the real optical turbulence value fluctuates by 1–2 orders of magnitude or even greater on the average value. The turbulence profile model based on the observed data is a statistical average result. It can neither represent the stratification characteristics of an actual atmospheric turbulence profile nor have the prediction function, and can not fully meet the demand of optical engineering. Owing to the limitation of the capacity and speed of the computer, it is impossible to solve the Navier Stokes equation through direct numerical simulation (DNS) and large eddy simulation (LES) to predict the optical turbulence. The solution is to predict the conventional gas parameters through the mesoscale weather numerical prediction model MM5/ WRF, and then calculate the turbulence parameters through the turbulence parameterization scheme. In this paper, the prediction methods and research results of $ C_n^2 $ in surface layer,boundary layer and free atmosphere layer are introduced. Tatarski formula is derived in detail from the turbulence kinetic energy prediction equation and the temperature fluctuation variance prediction equation, and the physical meaning and applicable conditions of the formula are summarized. The latest research progress of neural network prediction and Antarctic astronomical site selection is mainly introduced. The characteristics and differences among different models, such as the empirical model fitted with experimental data, the parameter model with conventional meteorological parameters based on Kolmogorov turbulence theory, the prediction model related to mesoscale meteorological model, and the neural network method based on data driving and so on, are analyzed. It is emphasized that Kolmogorov turbulence theory is the theoretical basis of the existing atmospheric optical turbulence parameter models.
      通信作者: 吴晓庆, xqwu@aiofm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 91752103, 41576185)和中国科学院战略性先导科技专项(A类) (批准号: CXJJ-19S028)资助的课题.
      Corresponding author: Wu Xiao-Qing, xqwu@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91752103, 41576185), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. CXJJ-19S028).
    [1]

    Beland R 1993 The Infrared and ElectroOpticalSystems Handbook, SPIE (Bellingham, WA: Optical Engineering Press) p211

    [2]

    吴晓庆, 马成胜, 曾宗泳 1996 量子电子学 13 385

    Wu X Q, Ma C S, Zeng Z Y 1996 Chin. J. Quantum Electron. 13 385

    [3]

    吴晓庆, 杨期科, 黄宏华, 青春, 胡晓丹, 王英俭 2023 物理学报 72 069201Google Scholar

    Wu X Q, Yang Q K, Huang H H, Qing C, Hu X D, Wang Y J 2023 Acta Phys. Sin. 72 069201Google Scholar

    [4]

    张兆顺, 崔桂香, 许春晓 2002 力学与实践 24 1Google Scholar

    Zhang Z S, Cui G X, Xu C X 2002 Mech. Eng. 24 1Google Scholar

    [5]

    吴晓庆 2017 激光与光电子学进展 54 010001Google Scholar

    Wu X Q 2017 Laser Optoelectron. Prog. 54 010001Google Scholar

    [6]

    Coulman C E, Andre J C, Lacarrere P, Guillingham P R 1986 Publ. Astron. Soc. Pac. 98 376Google Scholar

    [7]

    Masciadri E, Vernin J, Bougeault P 1999 Astron. Astrophys. Suppl. Ser. 137 185Google Scholar

    [8]

    Lascaux F, Masciadri E, Hagelin S 2010 Mon. Not. R. Astron. Soc. 403 1714Google Scholar

    [9]

    Wyngaard J C, Izumi Y, Collins S A 1971 J. Opt. Soc. Am. 61 1646Google Scholar

    [10]

    AndreasE L 1988 J. Opt. Soc. Am. 5 481Google Scholar

    [11]

    Davidson K L, Schacher G E, Fairall C W, Goroch A K 1981 Appl. Opt. 20 2919Google Scholar

    [12]

    Rachele H, Tunick A 1992 Proceedings, Battlefield Atmospherics Conference, White Sands Missile Range New Mexico, SPIE 1688 251

    [13]

    Tunick A D 1998 U. S. Army Research Laboratory, ARL-TR-1615

    [14]

    Hill R J 1980 J. Opt. Soc. Am. 70 1192Google Scholar

    [15]

    Wyngaard J C 1973 On Surface Layer Turbulence, in Workshop of Micrometeorology (Boston: American Meteorological Society) pp101–149

    [16]

    Kaimal J C, Wyngaard J C, Haugen D A, Cote O R, Izumi Y 1976 J. Atmos. Sci. 33 2152Google Scholar

    [17]

    Walters D L, Kunkel K E 1981 J. Opt. Soc. Am. 71 397Google Scholar

    [18]

    Kukharets V P, Tsvang L R 1980 Izv. Atmos. Oceanic Phys. 16 73

    [19]

    Murphy E A, Dewan E M, Sheldon S M 1985 in Adaptive Optics, Proc. SPIE 551 156

    [20]

    Andrews L C, Phillips R L, Crabbs R, Wayne D, Leclerc T, Sauer P 2010 Proc. SPIE 7588 758809Google Scholar

    [21]

    Andrews L C, Phillips R L, Crabbs R, Wayne D, Leclerc T, Sauer P 2012 Proc. SPIE 8238 82380FGoogle Scholar

    [22]

    吴晓庆, 朱行听, 黄宏华, 胡顺星 2012 光学学报 32 0701004Google Scholar

    Wu X Q, Zhu X T, Huang H H, Hu S X 2012 Acta Opt. Sin. 32 0701004Google Scholar

    [23]

    吴晓庆, 田启国, 金鑫淼, 姜鹏, 青春, 蔡俊, 周宏岩 2017 物理学报 66 039201Google Scholar

    Wu X Q, Tian Q G, Jin X M, Jiang P, Qing C, Cai J, Zhou H Y 2017 Acta Phys. Sin. 66 039201Google Scholar

    [24]

    吴晓庆, 王英俭, 曾宗泳, 马成胜, 袁仁民 2002 气象学报 60 1Google Scholar

    Wu X Q, Wang Y J, Zeng Z Y, Ma C S, Yuan R M 2002 Acta Meteorol. Sin. 60 1Google Scholar

    [25]

    Burk S D 1980 J. Appl. Meteor. 19 562Google Scholar

    [26]

    吴晓庆, 王英俭, 曾宗泳, 龚知本 2002 强激光与粒子束 14 819

    Wu X Q, Wang Y J, Zeng Z Y, Gong Z 2002 High Power Laser Part. Beams 14 819

    [27]

    Cheinet S, Beljaars A 2011 Boundary-Layer Meteorol 138 453Google Scholar

    [28]

    许利明 2008 硕士论文 (合肥: 中国科学院大学)

    Xu L M 2008 M. S. Thesis (Hefei: University of Chinese Academy of Sciences) (in Chinese)

    [29]

    Qing C, Wu X Q, Li X B, Zhu W Y, Qiao C H, Rao R Z, Mei H P 2016 Opt. Express 24 13303Google Scholar

    [30]

    Rumelhart D E, Hinton G E, Williams R J 1986 Nature 323 533Google Scholar

    [31]

    Wang Y, Basu S 2016 Opt. Lett. 41 2334Google Scholar

    [32]

    Su C D, Wu X Q, Luo T, Wu S, Qing C 2020 Appl. Opt. 59 3699Google Scholar

    [33]

    吴晓庆 2019 安徽师范大学学报自然科学版 (特约稿) 42 511

    Wu X Q 2019 J. Anhui Normal Univ. (Nat. Sci.) 42 511

    [34]

    吴晓庆 2014 安徽师范大学学报(自然科学版) (特约稿) 37 511

    Wu X Q 2014 J. Anhui Normal Univ. (Nat. Sci.) 37 511

    [35]

    Corrsin S 1951 J. Appl. Phys. 22 469Google Scholar

    [36]

    Dewan E M 1980 Optical Turbulence Forecasting: A turorial Air Force Geophysics Laboratory Technical Report No. AFGL-TR-80-0030, ADA 086863

    [37]

    Horne J D 2004 M. S. Thesis (Monterey, CA: Naval Postgraduate School) p163

    [38]

    Hodur R M 1997 Mon. Weather Rev. 125 1414Google Scholar

    [39]

    Dewan E M, Good R E, Beland B, Brown J 1993 Environmental Research Paper (Phillips Laboratory, Hansom Air Force Base) No. 1121 PL-TR-93-2043, ADA 279399

    [40]

    Ruggiero F H, DeBenedictis D A 2002 HPCMP Users Group Conference Austin, Texas, January 13–14, 2002 p11

    [41]

    Coulman C, Vernin J, Coqueugniot Y, Caccia J 1988 Appl. Opt. 27 155Google Scholar

    [42]

    Basu S 2015 Opt. Lett. 40 4130Google Scholar

    [43]

    胡晓丹, 吴晓庆, 青春 2019 极地研究 31 301

    Hu X D, Wu X Q, Qing C 2019 Chin. J. Polar Res. 31 301

    [44]

    胡晓丹, 苏昶东, 罗涛, 青春, 孙刚, 刘庆, 李学彬, 朱文越, 吴晓庆 2019 强激光与粒子束 31 081002Google Scholar

    Hu X D, Su C D, Luo T, Qing C, Sun G, Liu Q, Li X B, Zhu W Y, Wu X Q 2019 High Power Laser Part. Beams 31 081002Google Scholar

    [45]

    Wu S, Su C D, Wu X Q, Luo T, Li X B 2020 Publ. Astron. Soc. Pac. 132 084501Google Scholar

    [46]

    Wu S, Wu X Q, Su C D, YangQ K, Xu J Y, Luo T, Huang C, Qing C 2021 Opt. Express 29 12455

    [47]

    青春, 吴晓庆, 李学彬, 黄宏华, 蔡俊 2015 强激光与粒子束 27 061009Google Scholar

    Qing C, Wu X Q, Li X B, Huang H H, Cai J 2015 High Power Laser Part. Beams 27 061009Google Scholar

    [48]

    青春, 吴晓庆, 李学彬, 朱文越, 饶瑞中, 梅海平 2015 中国激光 42 0913001Google Scholar

    Qing C, Wu X Q, Li X B, Zhu W Y, Rao R Z, Mei H P 2015 Chin. J. Lasers 42 0913001Google Scholar

    [49]

    青春, 吴晓庆, 李学彬, 朱文越, 黄印博, 饶瑞中, 蔡俊 2016 光学学报 36 0501001Google Scholar

    Qing C, Wu X Q, Li X B, Zhu W Y, Huang Y B, Rao R Z, Cai J 2016 Acta Opt. Sin. 36 0501001Google Scholar

    [50]

    Su C D, Wu X Q, Wu S, Yang Q K, Han Y J, Qing C, Luo T, Liu Y 2021 Mon. Not. R. Astron. Soc. 506 3430Google Scholar

    [51]

    Travouillon T, Ashley M C B, Burton M G, Storey J W V, Loewenstein R F 2003 Astron. Astrophys. 400 1163Google Scholar

    [52]

    Lawrence J S, Ashley M C B, Tokovinin A, Travouillon T 2004 Nature 431 278Google Scholar

    [53]

    Agabi A, Aristidi E, Azouit M, Fossat E, Martin F, Sadibekova T, Vernin J, Ziad A 2006 PASP 118 344Google Scholar

    [54]

    Aristidi E, Fossat E, Agabi A, Mékarnia D, Jeanneaux F, Bondoux E, Challita Z, Ziad A, Vernin J, Trinquet H 2009 Astron. Astrophys. 499 955Google Scholar

    [55]

    Ma B, Shang Z H, Hu Y, Hu K L, Jiang P 2020 Nature 583 771Google Scholar

    [56]

    Wu X Q, Tian Q G, Jiang P, Chai B, Qing C, Cai J, Jin X M, Zhou H Y 2015 Adv. Polar Sci. 26 305

    [57]

    Qing C, Wu X Q, Huang H H, Tian Q G, Zhu W Y, Rao R Z, Li X B 2016 Opt. Express 24 20424Google Scholar

    [58]

    Qing C, Li X B, Wu X Q, TianQ G, Liu D, Rao R Z, Zhu W Y 2018 Astron. J. 155 13

    [59]

    Yang Q K, Wu X Q, Han Y J, Qing C 2021 Appl. Opt. 60 4084Google Scholar

    [60]

    Yang Q K, Wu X Q, Wu S, Han Y J, Su C D, Zhang S T, Qing C 2021 J. Opt. Soc. Am. 38 1483Google Scholar

    [61]

    Yang Q K, Wu X Q, Han Y J, Qing C, Wu S, Su C D, Wu P F, Luo T, Zhang S T 2021 Opt. Express 29 44000Google Scholar

    [62]

    Yang Q K, Wu X Q, Han Y J, Qing C, Wu S, Su C D, Wu P F, Zhang S T 2021 Opt. Express 29 35238Google Scholar

  • 图 1  不同大气稳定度下模式估算不确定度

    Fig. 1.  The uncertainty of $ C_n^2 $ estimated by model under different stability parameter.

    图 2  一维边界层模式估算的合肥地区近地面层$ C_n^2 $随季节的日变化

    Fig. 2.  Seasonal and diurnal variation of $ C_n^2 $ at surface layer in Hefei area estimated by one-dimensional boundary layer model.

    图 3  中尺度气象模式预报$ C_n^2 $流程图

    Fig. 3.  Flow chart of Forecasting $ C_n^2 $ With mesoscale numerical model.

    图 4  AGA-BP 神经网络结构

    Fig. 4.  AGA-BP neural network architecture.

    图 5  三种方法$ C_n^2 $估算值与实测值的比对结果

    Fig. 5.  Comparison results of estimated and measured $ C_n^2 $ of three methods.

    图 6  SA-BP 神经网络的结构图

    Fig. 6.  SA-BP neural network architecture.

    图 7  SA-BP 神经网络算法流程图

    Fig. 7.  Block diagram of the SA-BP neural network.

    图 8  Polar WRF模拟的2014年1月30日(UTC)南极高原2 m高度处$C_n^2$的日变化. 等高线表示地形高度(m), 太阳图标引出的红色箭头表示太阳光照射方向, 黑色五角星表示泰山站位置, 灰色同心圆表示间隔为5°的纬度

    Fig. 8.  Polar WRF simulated diurnal evolution of $C_n^2$ at 2 m above model surface of Antarctic Plateau on 30 January, 2014 (UTC), represented by colors.The contours represent the terrain height(m). There are red arrows drawn with a tail at the center of the Sun symbol; the direction of each arrow indicates the direction of sunlight. The black stars show the location of the Taishan Station. The interval of the gray concentric circles representing the latitudes is 5°.

    图 9  南极昆仑站整层视宁度估算与实测比较(实测视宁度数据来自文献[55]) (图9(b)是平均风速廓线, (d)是平均气温廓线, (f)是视宁度的统计分布)

    Fig. 9.  Comparison of seeing estimated and measured of whole layer at Kunlun station, Antarctica (The seeing data measured from literature [55]).

    表 1  三种$ C_n^2 $估算方法的比对结果

    Table 1.  Comparison results of$ C_n^2 $ by three estimation methods.

    GradientAGA-BPPolar WRF
    RMSE0.410.290.40
    ${R_{xy}}$0.610.900.67
    下载: 导出CSV

    表 2  6条实测$C_n^2$廓线与SA-BP预测和HMNSP99估算的$C_n^2$廓线定量比对(RMSE/$ {R_{xy}} $)

    Table 2.  Quantitative comparison of 6 measured $ C_n^2 $ profiles with prediction by SA-BP and by HMNSP99 (RMSE/$ {R_{xy}} $).

    气球编号探空日期探空时间HMNSP99 (RMSE/$ {R_{xy}} $)SA-BP (RMSE/$ {R_{xy}} $)
    113/08/202020:031.30/0.650.49/0.72
    214/08/202020:111.24/0.610.67/0.72
    315/08/202020:051.34/0.430.75/0.77
    420/08/202007:250.76/0.470.46/0.71
    521/08/202007:170.74/0.760.43/0.80
    622/08/202007:100.76/0.500.36/0.83
    下载: 导出CSV
  • [1]

    Beland R 1993 The Infrared and ElectroOpticalSystems Handbook, SPIE (Bellingham, WA: Optical Engineering Press) p211

    [2]

    吴晓庆, 马成胜, 曾宗泳 1996 量子电子学 13 385

    Wu X Q, Ma C S, Zeng Z Y 1996 Chin. J. Quantum Electron. 13 385

    [3]

    吴晓庆, 杨期科, 黄宏华, 青春, 胡晓丹, 王英俭 2023 物理学报 72 069201Google Scholar

    Wu X Q, Yang Q K, Huang H H, Qing C, Hu X D, Wang Y J 2023 Acta Phys. Sin. 72 069201Google Scholar

    [4]

    张兆顺, 崔桂香, 许春晓 2002 力学与实践 24 1Google Scholar

    Zhang Z S, Cui G X, Xu C X 2002 Mech. Eng. 24 1Google Scholar

    [5]

    吴晓庆 2017 激光与光电子学进展 54 010001Google Scholar

    Wu X Q 2017 Laser Optoelectron. Prog. 54 010001Google Scholar

    [6]

    Coulman C E, Andre J C, Lacarrere P, Guillingham P R 1986 Publ. Astron. Soc. Pac. 98 376Google Scholar

    [7]

    Masciadri E, Vernin J, Bougeault P 1999 Astron. Astrophys. Suppl. Ser. 137 185Google Scholar

    [8]

    Lascaux F, Masciadri E, Hagelin S 2010 Mon. Not. R. Astron. Soc. 403 1714Google Scholar

    [9]

    Wyngaard J C, Izumi Y, Collins S A 1971 J. Opt. Soc. Am. 61 1646Google Scholar

    [10]

    AndreasE L 1988 J. Opt. Soc. Am. 5 481Google Scholar

    [11]

    Davidson K L, Schacher G E, Fairall C W, Goroch A K 1981 Appl. Opt. 20 2919Google Scholar

    [12]

    Rachele H, Tunick A 1992 Proceedings, Battlefield Atmospherics Conference, White Sands Missile Range New Mexico, SPIE 1688 251

    [13]

    Tunick A D 1998 U. S. Army Research Laboratory, ARL-TR-1615

    [14]

    Hill R J 1980 J. Opt. Soc. Am. 70 1192Google Scholar

    [15]

    Wyngaard J C 1973 On Surface Layer Turbulence, in Workshop of Micrometeorology (Boston: American Meteorological Society) pp101–149

    [16]

    Kaimal J C, Wyngaard J C, Haugen D A, Cote O R, Izumi Y 1976 J. Atmos. Sci. 33 2152Google Scholar

    [17]

    Walters D L, Kunkel K E 1981 J. Opt. Soc. Am. 71 397Google Scholar

    [18]

    Kukharets V P, Tsvang L R 1980 Izv. Atmos. Oceanic Phys. 16 73

    [19]

    Murphy E A, Dewan E M, Sheldon S M 1985 in Adaptive Optics, Proc. SPIE 551 156

    [20]

    Andrews L C, Phillips R L, Crabbs R, Wayne D, Leclerc T, Sauer P 2010 Proc. SPIE 7588 758809Google Scholar

    [21]

    Andrews L C, Phillips R L, Crabbs R, Wayne D, Leclerc T, Sauer P 2012 Proc. SPIE 8238 82380FGoogle Scholar

    [22]

    吴晓庆, 朱行听, 黄宏华, 胡顺星 2012 光学学报 32 0701004Google Scholar

    Wu X Q, Zhu X T, Huang H H, Hu S X 2012 Acta Opt. Sin. 32 0701004Google Scholar

    [23]

    吴晓庆, 田启国, 金鑫淼, 姜鹏, 青春, 蔡俊, 周宏岩 2017 物理学报 66 039201Google Scholar

    Wu X Q, Tian Q G, Jin X M, Jiang P, Qing C, Cai J, Zhou H Y 2017 Acta Phys. Sin. 66 039201Google Scholar

    [24]

    吴晓庆, 王英俭, 曾宗泳, 马成胜, 袁仁民 2002 气象学报 60 1Google Scholar

    Wu X Q, Wang Y J, Zeng Z Y, Ma C S, Yuan R M 2002 Acta Meteorol. Sin. 60 1Google Scholar

    [25]

    Burk S D 1980 J. Appl. Meteor. 19 562Google Scholar

    [26]

    吴晓庆, 王英俭, 曾宗泳, 龚知本 2002 强激光与粒子束 14 819

    Wu X Q, Wang Y J, Zeng Z Y, Gong Z 2002 High Power Laser Part. Beams 14 819

    [27]

    Cheinet S, Beljaars A 2011 Boundary-Layer Meteorol 138 453Google Scholar

    [28]

    许利明 2008 硕士论文 (合肥: 中国科学院大学)

    Xu L M 2008 M. S. Thesis (Hefei: University of Chinese Academy of Sciences) (in Chinese)

    [29]

    Qing C, Wu X Q, Li X B, Zhu W Y, Qiao C H, Rao R Z, Mei H P 2016 Opt. Express 24 13303Google Scholar

    [30]

    Rumelhart D E, Hinton G E, Williams R J 1986 Nature 323 533Google Scholar

    [31]

    Wang Y, Basu S 2016 Opt. Lett. 41 2334Google Scholar

    [32]

    Su C D, Wu X Q, Luo T, Wu S, Qing C 2020 Appl. Opt. 59 3699Google Scholar

    [33]

    吴晓庆 2019 安徽师范大学学报自然科学版 (特约稿) 42 511

    Wu X Q 2019 J. Anhui Normal Univ. (Nat. Sci.) 42 511

    [34]

    吴晓庆 2014 安徽师范大学学报(自然科学版) (特约稿) 37 511

    Wu X Q 2014 J. Anhui Normal Univ. (Nat. Sci.) 37 511

    [35]

    Corrsin S 1951 J. Appl. Phys. 22 469Google Scholar

    [36]

    Dewan E M 1980 Optical Turbulence Forecasting: A turorial Air Force Geophysics Laboratory Technical Report No. AFGL-TR-80-0030, ADA 086863

    [37]

    Horne J D 2004 M. S. Thesis (Monterey, CA: Naval Postgraduate School) p163

    [38]

    Hodur R M 1997 Mon. Weather Rev. 125 1414Google Scholar

    [39]

    Dewan E M, Good R E, Beland B, Brown J 1993 Environmental Research Paper (Phillips Laboratory, Hansom Air Force Base) No. 1121 PL-TR-93-2043, ADA 279399

    [40]

    Ruggiero F H, DeBenedictis D A 2002 HPCMP Users Group Conference Austin, Texas, January 13–14, 2002 p11

    [41]

    Coulman C, Vernin J, Coqueugniot Y, Caccia J 1988 Appl. Opt. 27 155Google Scholar

    [42]

    Basu S 2015 Opt. Lett. 40 4130Google Scholar

    [43]

    胡晓丹, 吴晓庆, 青春 2019 极地研究 31 301

    Hu X D, Wu X Q, Qing C 2019 Chin. J. Polar Res. 31 301

    [44]

    胡晓丹, 苏昶东, 罗涛, 青春, 孙刚, 刘庆, 李学彬, 朱文越, 吴晓庆 2019 强激光与粒子束 31 081002Google Scholar

    Hu X D, Su C D, Luo T, Qing C, Sun G, Liu Q, Li X B, Zhu W Y, Wu X Q 2019 High Power Laser Part. Beams 31 081002Google Scholar

    [45]

    Wu S, Su C D, Wu X Q, Luo T, Li X B 2020 Publ. Astron. Soc. Pac. 132 084501Google Scholar

    [46]

    Wu S, Wu X Q, Su C D, YangQ K, Xu J Y, Luo T, Huang C, Qing C 2021 Opt. Express 29 12455

    [47]

    青春, 吴晓庆, 李学彬, 黄宏华, 蔡俊 2015 强激光与粒子束 27 061009Google Scholar

    Qing C, Wu X Q, Li X B, Huang H H, Cai J 2015 High Power Laser Part. Beams 27 061009Google Scholar

    [48]

    青春, 吴晓庆, 李学彬, 朱文越, 饶瑞中, 梅海平 2015 中国激光 42 0913001Google Scholar

    Qing C, Wu X Q, Li X B, Zhu W Y, Rao R Z, Mei H P 2015 Chin. J. Lasers 42 0913001Google Scholar

    [49]

    青春, 吴晓庆, 李学彬, 朱文越, 黄印博, 饶瑞中, 蔡俊 2016 光学学报 36 0501001Google Scholar

    Qing C, Wu X Q, Li X B, Zhu W Y, Huang Y B, Rao R Z, Cai J 2016 Acta Opt. Sin. 36 0501001Google Scholar

    [50]

    Su C D, Wu X Q, Wu S, Yang Q K, Han Y J, Qing C, Luo T, Liu Y 2021 Mon. Not. R. Astron. Soc. 506 3430Google Scholar

    [51]

    Travouillon T, Ashley M C B, Burton M G, Storey J W V, Loewenstein R F 2003 Astron. Astrophys. 400 1163Google Scholar

    [52]

    Lawrence J S, Ashley M C B, Tokovinin A, Travouillon T 2004 Nature 431 278Google Scholar

    [53]

    Agabi A, Aristidi E, Azouit M, Fossat E, Martin F, Sadibekova T, Vernin J, Ziad A 2006 PASP 118 344Google Scholar

    [54]

    Aristidi E, Fossat E, Agabi A, Mékarnia D, Jeanneaux F, Bondoux E, Challita Z, Ziad A, Vernin J, Trinquet H 2009 Astron. Astrophys. 499 955Google Scholar

    [55]

    Ma B, Shang Z H, Hu Y, Hu K L, Jiang P 2020 Nature 583 771Google Scholar

    [56]

    Wu X Q, Tian Q G, Jiang P, Chai B, Qing C, Cai J, Jin X M, Zhou H Y 2015 Adv. Polar Sci. 26 305

    [57]

    Qing C, Wu X Q, Huang H H, Tian Q G, Zhu W Y, Rao R Z, Li X B 2016 Opt. Express 24 20424Google Scholar

    [58]

    Qing C, Li X B, Wu X Q, TianQ G, Liu D, Rao R Z, Zhu W Y 2018 Astron. J. 155 13

    [59]

    Yang Q K, Wu X Q, Han Y J, Qing C 2021 Appl. Opt. 60 4084Google Scholar

    [60]

    Yang Q K, Wu X Q, Wu S, Han Y J, Su C D, Zhang S T, Qing C 2021 J. Opt. Soc. Am. 38 1483Google Scholar

    [61]

    Yang Q K, Wu X Q, Han Y J, Qing C, Wu S, Su C D, Wu P F, Luo T, Zhang S T 2021 Opt. Express 29 44000Google Scholar

    [62]

    Yang Q K, Wu X Q, Han Y J, Qing C, Wu S, Su C D, Wu P F, Zhang S T 2021 Opt. Express 29 35238Google Scholar

  • [1] 吴晓庆, 杨期科, 黄宏华, 青春, 胡晓丹, 王英俭. 大气光学湍流模式研究: ${\boldsymbol{C}}_{\boldsymbol{n}}^{\boldsymbol 2}$廓线模式. 物理学报, 2023, 72(6): 069201. doi: 10.7498/aps.72.20221985
    [2] 艾则孜姑丽·阿不都克热木, 陶志炜, 刘世韦, 李艳玲, 饶瑞中, 任益充. 大气湍流对接收光场时间相干特性的影响. 物理学报, 2022, 71(23): 234201. doi: 10.7498/aps.71.20221202
    [3] 徐启伟, 王佩佩, 曾镇佳, 黄泽斌, 周新星, 刘俊敏, 李瑛, 陈书青, 范滇元. 基于深度卷积神经网络的大气湍流相位提取. 物理学报, 2020, 69(1): 014209. doi: 10.7498/aps.69.20190982
    [4] 蔡俊, 李学彬, 詹国伟, 武鹏飞, 徐春燕, 青春, 吴晓庆. 一个新的海边光学湍流外尺度和Cn2的廓线模式. 物理学报, 2018, 67(1): 014206. doi: 10.7498/aps.67.20171324
    [5] 吴晓庆, 田启国, 金鑫淼, 姜鹏, 青春, 蔡俊, 周宏岩. 常规气象参数估算南极泰山站近地面大气光学湍流强度. 物理学报, 2017, 66(3): 039201. doi: 10.7498/aps.66.039201
    [6] 冒添逸, 陈钱, 何伟基, 庄佳衍, 邹云浩, 戴慧东, 顾国华. 混沌与湍流大气中的光通信. 物理学报, 2016, 65(8): 084207. doi: 10.7498/aps.65.084207
    [7] 王倩, 梅海平, 李玉剑, 邵士勇, 李学彬, 饶瑞中. 远海海面大气光学湍流实验测量. 物理学报, 2016, 65(7): 074206. doi: 10.7498/aps.65.074206
    [8] 王倩, 梅海平, 钱仙妹, 饶瑞中. 近地面大气光学湍流外尺度的实验研究. 物理学报, 2015, 64(22): 224216. doi: 10.7498/aps.64.224216
    [9] 王倩, 梅海平, 钱仙妹, 饶瑞中. 近地面大气光学湍流空间相关特性的实验研究. 物理学报, 2015, 64(11): 114212. doi: 10.7498/aps.64.114212
    [10] 马媛, 季小玲. 倾斜离轴高斯-谢尔模型光束在大气湍流中通过猫眼光学镜头反射光的光强特性. 物理学报, 2013, 62(9): 094214. doi: 10.7498/aps.62.094214
    [11] 李晓庆, 季小玲, 朱建华. 大气湍流中光束的高阶强度矩. 物理学报, 2013, 62(4): 044217. doi: 10.7498/aps.62.044217
    [12] 张兰强, 顾乃庭, 饶长辉. 大气湍流三维波前探测模式层析算法分析. 物理学报, 2013, 62(16): 169501. doi: 10.7498/aps.62.169501
    [13] 潘平平, 张彬. 基于M2因子测量的大气湍流参数的确定方法. 物理学报, 2011, 60(1): 014215. doi: 10.7498/aps.60.014215
    [14] 陈晓文, 汤明玥, 季小玲. 大气湍流对部分相干厄米-高斯光束空间相干性的影响. 物理学报, 2008, 57(4): 2607-2613. doi: 10.7498/aps.57.2607
    [15] 韦宏艳, 吴振森, 彭 辉. 斜程大气湍流中漫射目标的散射特性. 物理学报, 2008, 57(10): 6666-6672. doi: 10.7498/aps.57.6666
    [16] 季小玲, 汤明玥, 张 涛. 超短脉冲厄米-高斯光束在湍流大气中的光谱移动和光谱跃变. 物理学报, 2007, 56(7): 4281-4288. doi: 10.7498/aps.56.4281
    [17] 季小玲, 汤明玥. 一维线阵离轴高斯光束通过湍流大气的传输特性. 物理学报, 2006, 55(9): 4968-4973. doi: 10.7498/aps.55.4968
    [18] 季小玲, 黄太星, 吕百达. 部分相干双曲余弦高斯光束通过湍流大气的光束扩展. 物理学报, 2006, 55(2): 978-982. doi: 10.7498/aps.55.978
    [19] 陈京元, 陈式刚, 王光瑞. 间歇性大气湍流中光传播问题的近Gauss极限分析. 物理学报, 2005, 54(7): 3123-3131. doi: 10.7498/aps.54.3123
    [20] 王晓春, 周定文, 张以谟. 非线性光学位相共轭实时补偿大气湍流扰动. 物理学报, 1989, 38(3): 466-470. doi: 10.7498/aps.38.466
计量
  • 文章访问数:  6610
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-17
  • 修回日期:  2022-11-25
  • 上网日期:  2022-12-09
  • 刊出日期:  2023-02-20

/

返回文章
返回