搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

烧结Nd25.5Dy6.5Co13FebalM1.05B0.98磁体温度稳定性和力学性能研究

徐吉元 张家滕 孟睿阳 陈红升 方以坤 董生智 李卫

引用本文:
Citation:

烧结Nd25.5Dy6.5Co13FebalM1.05B0.98磁体温度稳定性和力学性能研究

徐吉元, 张家滕, 孟睿阳, 陈红升, 方以坤, 董生智, 李卫

Study on temperature stability and mechanical properties of sintered Nd25.5Dy6.5Co13(Fe, M)balB0.98 magnet

Xu Ji-Yuan, Zhang Jia-Teng, Meng Rui-Yang, Chen Hong-Sheng, Fang Yi-Kun, Dong Sheng-Zhi, Li Wei
PDF
HTML
导出引用
  • 本文采用速凝甩带-氢破-气流磨-取向成型-烧结回火等工序, 同时添加Dy和Co元素, 制备了烧结Nd25.5Dy6.5Co13FebalM1.05B0.98磁体(Co13磁体), 室温下磁能积(BH)max = 30.88 MGOe, 矫顽力Hcj = 19.01 kOe. 与Nd30Dy1.5Co0.5FebalM1.05B0.98(35SH)磁体相比, Co13磁体的室温磁性能略低, 但温度稳定性显著提升, 剩磁温度系数α从–0.136 %/℃提升至–0.065 %/℃ (室温—180 ℃); 居里温度TC从310 ℃升高至约454 ℃; 最高使用温度TW从165℃提升到约200 ℃. 力学性能测试和断口分析表明, Co13磁体中由于Co含量较高, 主相晶粒发生解理断裂的比例提高, 抗弯强度与35SH磁体相比, 虽然有所降低, 但是仍为2:17型Sm-Co磁体的近2倍. Co13磁体发生解理断裂的原因, 可能是Co元素在2∶14∶1主相中择优取代Fe, 导致晶格畸变, 降低了主相晶粒强度. 微观组织分析表明, Co13磁体晶界相中存在高Co区, 其成分接近(Nd, Dy)(Fe, Co)3, 这可能是导致矫顽力较低的原因之一.
    The sintered Nd25.5Dy6.5Co13FebalM1.05B0.98 magnet (Co13 magnet) and Nd30Dy1.5Co0.5FebalM1.05B0.98 magnet (35SH magnet) are prepared by strip casting, hydrogen decrepitation, jet milling, orienting compression, sintering and annealling. The maximum energy product (BH)max and coercivity Hcj of Co13 magnet at room temperature are 30.88 MGOe and 19.01 kOe, which are lower than those of 35SH magnet. By adding Co and Dy, the remanence temperature coefficient α , curie temperature TC, and max operating temperature TW significantly increase form –0.136%/℃ to –0.065%/℃ (25–180 ℃), 310 ℃ to 454 ℃, and 160 ℃ to 200 ℃ respectively. Mechanical property test and fracture analysis show that owing to the high content of Co in the magnet, the proportion of cleavage fracture in the main phase grains increases, and the bending strength Rbb decreases compared with the Rbb of 35SH magnet, which is nearly twice that of 2∶17 type Sm-Co magnet. The reason for Rbb decreasing might be that Co element preferentially replaces Fe in the 2∶14∶1 main phase, which leads the lattice to be distorted and the grain strength of the main phase to decrease. The microstructure analysis shows that there exists a high Co region in the grain boundary phase of Co13 magnet, and its composition is close to (Nd,Dy)(Fe,Co)3, which might be one of the reasons for coercivity Hcj decreasing.
      通信作者: 董生智, dong_shengzhi@163.com
    • 基金项目: 国家重点研发计划(批准号: 2021YFB3502900)资助的课题.
      Corresponding author: Dong Sheng-Zhi, dong_shengzhi@163.com
    • Funds: Project supported by the the National Key R&D Program of China (Grant No. 2021YFB3502900).
    [1]

    Brown D, Ma B M, Chen Z M 2002 J. Magn. Magn. Mater. 248 432

    [2]

    Nakamura H, Hirota K, Shimao M, Minowa T, Honshima M 2005 IEEE. T. Magn. 41 3844Google Scholar

    [3]

    朱明刚, 孙旭, 刘荣辉, 徐会兵 2020 中国工程科学 22 37Google Scholar

    Zhu M G, Sun X, Liu R H, Xu H B 2020 Strateg. Study CAE 22 37Google Scholar

    [4]

    Hono K, Sepehri-Amin H 2012 Scripta Mater. 67 530Google Scholar

    [5]

    Coey J 2020 Engineering 6 118

    [6]

    Matsuura Y 2006 J. Magn. Magn. Mater. 303 344Google Scholar

    [7]

    Givord D, Li H S, Moreau J M 1984 Solid State Commun. 50 497Google Scholar

    [8]

    Hu Z H, Cheng X H, Zhu M G, Li W, Lian F Z 2008 Rare Metals 27 358Google Scholar

    [9]

    Gutfleisch O, Willard M A, Brück E, Chen C H, Sankar S G, Liu J P 2011 Adv. Mater. 23 821Google Scholar

    [10]

    Kronmüller H, Goll D 2002 Scripta Mater. 47 545Google Scholar

    [11]

    Machida H, Fujiwara T, Kamada R, Morimoto Y, Takezawa M 2017 AIP Adv. 7 056223Google Scholar

    [12]

    孙威 2015 博士学位论文(北京: 钢铁研究总院)

    Sun W 2015 Ph. D. Dissertation (Beijing: Central Iron & Steel Research Institute) (in Chinese)

    [13]

    周寿增, 郭灿杰, 呼琴, 李春和 1988 北京钢铁学院学报 10 317Google Scholar

    Zhou S Z, Guo C J, Hu Q, Li C H 1988 J. Beijing Univ. Iron Steel Tech. 10 317Google Scholar

    [14]

    ARAI S, SHIBATA T 1985 IEEE T. Magn. 21 1952Google Scholar

    [15]

    Kronmuller H 1987 Phys. Status Solidi B 144 385

    [16]

    Li L, Dong S Z, Han R, Song K K, Li D, Zhu M G, Li W, Sun W 2019 J. Rare Earth 37 628Google Scholar

    [17]

    Sagawa M, Hirosawa S, Tokuhara K, Yamamoto H, Fujimura S 1987 J. Appl. Phys. 61 3559Google Scholar

    [18]

    Hirosawa S, Matsuura Y, Yamamoto H, Fujimura S, Sagawa M 1986 J. Appl. Phys. 59 873Google Scholar

    [19]

    Ma B M, Narasimhan, K, Hurt J 1986 IEEE. T. Magn. 22 1081Google Scholar

    [20]

    Li W, Jiang L, Wang D, Sun T D, Zhu J H 1986 J. Alloys Compd. 126 95

    [21]

    Kablov E N, Petrakov A F, Piskorskii V P, Valeev V A, Nazarova N V 2007 Met. Sci. Heat Treat. 49 159Google Scholar

    [22]

    蒋建华, 曾振鹏 1999 稀有金属材料与工程 28 144Google Scholar

    Jiang J H, Zeng Z P 1999 Rare Metals Eng. 28 144Google Scholar

    [23]

    Li W, Li A H, Wang H J, Pan W, Chang H W 2009 J. Appl. Phys. 105 07A703Google Scholar

    [24]

    Wang H J, Li A H, Li W 2006 J. Magn. Magn. Mater. 307 268Google Scholar

    [25]

    Wang H J, Li a H, Li W 2007 Intermetallics 15 985

    [26]

    XB/T 507—2009 2: 17 Type Samarium Uobalt Uermanent Uagnetic Material (in Chinese) [XB/T 507—2009 2: 17型钐钴永磁材料]

    [27]

    GYB-2 2016 钢铁研究总院

    GYB-2 2016 Central Iron & Steel Research Institute (in Chinese)

    [28]

    GB/T 13560 2017 烧结钕铁硼永磁材料

    GB/T 13560—2017 Sintered Neodymium Iron Boron Permanent Magnets (in Chinese)

    [29]

    Wu Y Y, Skokov K, Schfer L, Maccari F, Aubert A, Xu H, Wu H C, Jiang C B, Gutfleisch O 2022 Acta Mater. 235 118062Google Scholar

    [30]

    Popov A G, Kolodkin D A, Gaviko V S, Vasilenko D Y, Shitov A V 2018 Met. Sci. Heat Treat. 60 528Google Scholar

  • 图 1  样品在不同温度下的退磁曲线和剩磁温度系数随温度区间的变化 (a) Co13的退磁曲线; (b) 35SH的退磁曲线; (c) Sm2Co17的退磁曲线; (d)剩磁温度系数随温度的变化

    Fig. 1.  Demagnetization curve and remanence temperature coefficient of samples at different temperatures: (a) Demagnetization curve of Co13 magnet; (b) demagnetization curve of 35SH magnet; (c) demagnetization curve of Sm2Co17 magnet; (d) remanence temperature coefficient.

    图 2  磁性能随温度变化曲线和DTG曲线 (a)Br随温度变化曲线; (b) Hcj随温度变化曲线; (c) (BH)max随温度变化曲线; (d) DTG曲线

    Fig. 2.  Magnetic properties at different temperatures and DTG curve: (a) Br at different temperatures; (b) Hcj at different temperatures; (c) (BH)max at different temperatures; (d) DTG curve.

    图 3  样品的不可逆磁通损失随温度变化曲线

    Fig. 3.  Irreversible magnetic flux loss versus temperature.

    图 4  两种磁体的背散射形貌图 (a) Co13磁体; (b) 35SH磁体

    Fig. 4.  Backscattering topography of two magnets: (a) Co13 magnet; (b) 35SH magnet.

    图 5  两种磁体的背散射形貌和元素面扫图 (a) Co13磁体; (b) 35SH磁体

    Fig. 5.  Backscattering morphology and element mapping scan of two magnets: (a) Co13 magnet; (b) 35SH magnet.

    图 6  磁体的力学性能和密度 (a)力学性能对比; (b)密度对比

    Fig. 6.  Mechanical properties and density of magnets: (a) Comparison of mechanical properties; (b) comparison of density.

    图 7  磁体抗弯样品断口形貌图 (a) Co13磁体; (b) 35SH磁体; (c) Sm2Co17磁体

    Fig. 7.  Fracture morphology of bending sample: (a) Co13 magnet; (b) 35SH magnet;(c)Sm2Co17 magnet.

    表 1  样品在不同温度区间内的剩磁温度系数α(%·℃–1)

    Table 1.  Remanence temperature coefficient α in different temperature ranges(%·℃–1).

    SampleTemperature ranges/℃
    25—4025—6025—8025—10025—12025—14025—16025—180
    Co13–0.027–0.036–0.044–0.048–0.053–0.057–0.061–0.065
    35SH–0.081–0.102–0.107–0.110–0.117–0.123–0.129–0.136
    Sm2Co17–0.006–0.020–0.029–0.032–0.034–0.036–0.038–0.038
    下载: 导出CSV

    表 2  两种磁体在不同位置的Nd/Dy/Fe/Co元素含量(%)

    Table 2.  Nd/Dy/Fe/Co element content of two magnets at different positions(%).

    SamplesPositionsElements content
    NdDyCoFe
    Co13189.752.130.987.13
    239.526.7719.3734.34
    321.516.0213.0659.41
    35SH420.501.160.6977.65
    579.200.900.5219.38
    下载: 导出CSV

    表 3  磁体的抗弯强度、抗压强度和显微硬度

    Table 3.  Bending strength, compressive strength and Vickers hardness of magnets.

    SamplesRbb/MPaRmc/MPaHV0.5
    1#2#3#Avg.1#2#3#Avg.1#2#3#Avg.
    Co13162167159163800815814810665677661668
    35SH210200206205841845849845625630611622
    Sm2Co1792818385891883901892640661654652
    下载: 导出CSV
  • [1]

    Brown D, Ma B M, Chen Z M 2002 J. Magn. Magn. Mater. 248 432

    [2]

    Nakamura H, Hirota K, Shimao M, Minowa T, Honshima M 2005 IEEE. T. Magn. 41 3844Google Scholar

    [3]

    朱明刚, 孙旭, 刘荣辉, 徐会兵 2020 中国工程科学 22 37Google Scholar

    Zhu M G, Sun X, Liu R H, Xu H B 2020 Strateg. Study CAE 22 37Google Scholar

    [4]

    Hono K, Sepehri-Amin H 2012 Scripta Mater. 67 530Google Scholar

    [5]

    Coey J 2020 Engineering 6 118

    [6]

    Matsuura Y 2006 J. Magn. Magn. Mater. 303 344Google Scholar

    [7]

    Givord D, Li H S, Moreau J M 1984 Solid State Commun. 50 497Google Scholar

    [8]

    Hu Z H, Cheng X H, Zhu M G, Li W, Lian F Z 2008 Rare Metals 27 358Google Scholar

    [9]

    Gutfleisch O, Willard M A, Brück E, Chen C H, Sankar S G, Liu J P 2011 Adv. Mater. 23 821Google Scholar

    [10]

    Kronmüller H, Goll D 2002 Scripta Mater. 47 545Google Scholar

    [11]

    Machida H, Fujiwara T, Kamada R, Morimoto Y, Takezawa M 2017 AIP Adv. 7 056223Google Scholar

    [12]

    孙威 2015 博士学位论文(北京: 钢铁研究总院)

    Sun W 2015 Ph. D. Dissertation (Beijing: Central Iron & Steel Research Institute) (in Chinese)

    [13]

    周寿增, 郭灿杰, 呼琴, 李春和 1988 北京钢铁学院学报 10 317Google Scholar

    Zhou S Z, Guo C J, Hu Q, Li C H 1988 J. Beijing Univ. Iron Steel Tech. 10 317Google Scholar

    [14]

    ARAI S, SHIBATA T 1985 IEEE T. Magn. 21 1952Google Scholar

    [15]

    Kronmuller H 1987 Phys. Status Solidi B 144 385

    [16]

    Li L, Dong S Z, Han R, Song K K, Li D, Zhu M G, Li W, Sun W 2019 J. Rare Earth 37 628Google Scholar

    [17]

    Sagawa M, Hirosawa S, Tokuhara K, Yamamoto H, Fujimura S 1987 J. Appl. Phys. 61 3559Google Scholar

    [18]

    Hirosawa S, Matsuura Y, Yamamoto H, Fujimura S, Sagawa M 1986 J. Appl. Phys. 59 873Google Scholar

    [19]

    Ma B M, Narasimhan, K, Hurt J 1986 IEEE. T. Magn. 22 1081Google Scholar

    [20]

    Li W, Jiang L, Wang D, Sun T D, Zhu J H 1986 J. Alloys Compd. 126 95

    [21]

    Kablov E N, Petrakov A F, Piskorskii V P, Valeev V A, Nazarova N V 2007 Met. Sci. Heat Treat. 49 159Google Scholar

    [22]

    蒋建华, 曾振鹏 1999 稀有金属材料与工程 28 144Google Scholar

    Jiang J H, Zeng Z P 1999 Rare Metals Eng. 28 144Google Scholar

    [23]

    Li W, Li A H, Wang H J, Pan W, Chang H W 2009 J. Appl. Phys. 105 07A703Google Scholar

    [24]

    Wang H J, Li A H, Li W 2006 J. Magn. Magn. Mater. 307 268Google Scholar

    [25]

    Wang H J, Li a H, Li W 2007 Intermetallics 15 985

    [26]

    XB/T 507—2009 2: 17 Type Samarium Uobalt Uermanent Uagnetic Material (in Chinese) [XB/T 507—2009 2: 17型钐钴永磁材料]

    [27]

    GYB-2 2016 钢铁研究总院

    GYB-2 2016 Central Iron & Steel Research Institute (in Chinese)

    [28]

    GB/T 13560 2017 烧结钕铁硼永磁材料

    GB/T 13560—2017 Sintered Neodymium Iron Boron Permanent Magnets (in Chinese)

    [29]

    Wu Y Y, Skokov K, Schfer L, Maccari F, Aubert A, Xu H, Wu H C, Jiang C B, Gutfleisch O 2022 Acta Mater. 235 118062Google Scholar

    [30]

    Popov A G, Kolodkin D A, Gaviko V S, Vasilenko D Y, Shitov A V 2018 Met. Sci. Heat Treat. 60 528Google Scholar

  • [1] 韩同伟, 李选政, 赵泽若, 顾叶彤, 马川, 张小燕. 不同荷载作用下二维硼烯的力学性能及变形破坏机理. 物理学报, 2024, 73(11): 116201. doi: 10.7498/aps.73.20240066
    [2] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析. 物理学报, 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [3] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟. 物理学报, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [4] 陈小明, 王明焱, 唐木智明, 李国荣. CaZrO3改性(Na, K)NbO3基无铅陶瓷电学性能的温度稳定性. 物理学报, 2021, 70(19): 197701. doi: 10.7498/aps.70.20210440
    [5] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [6] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [7] 陈治鹏, 马亚楠, 林雪玲, 潘凤春, 席丽莹, 马治, 郑富, 汪燕青, 陈焕铭. Nb掺杂-TiAl金属间化合物的电子结构与力学性能. 物理学报, 2017, 66(19): 196101. doi: 10.7498/aps.66.196101
    [8] 王海燕, 胡前库, 杨文朋, 李旭升. 金属元素掺杂对TiAl合金力学性能的影响. 物理学报, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [9] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟. 物理学报, 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [10] 马冰洋, 张安明, 尚海龙, 孙士阳, 李戈扬. 共溅射Al-Zr合金薄膜的非晶化及其力学性能. 物理学报, 2014, 63(13): 136801. doi: 10.7498/aps.63.136801
    [11] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能. 物理学报, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [12] 喻利花, 马冰洋, 曹峻, 许俊华. (Zr,V)N复合膜的结构、力学性能及摩擦性能研究. 物理学报, 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [13] 罗庆洪, 娄艳芝, 赵振业, 杨会生. 退火对AlTiN多层薄膜结构及力学性能影响. 物理学报, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [14] 罗庆洪, 陆永浩, 娄艳芝. Ti-B-C-N纳米复合薄膜结构及力学性能研究. 物理学报, 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [15] 余伟阳, 唐壁玉, 彭立明, 丁文江. α-Mg3Sb2的电子结构和力学性能. 物理学报, 2009, 58(13): 216-S223. doi: 10.7498/aps.58.216
    [16] 郭子政, 宣志国, 张院生, 安彩虹. 铁磁纳米阵列膜温度稳定性的损伤扩散研究. 物理学报, 2008, 57(10): 6571-6576. doi: 10.7498/aps.57.6571
    [17] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [18] 魏 仑, 梅芳华, 邵 楠, 董云杉, 李戈扬. TiN/TiB2异结构纳米多层膜的共格生长与力学性能. 物理学报, 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
    [19] 朱明刚, 李岫梅, 郭朝晖, 李 卫. Nd-Fe-B永磁材料低磁时效机理研究. 物理学报, 2005, 54(12): 5895-5900. doi: 10.7498/aps.54.5895
    [20] 李 腾, 李 卫, 潘 伟, 李岫梅. Fe40—45Cr30—35Co20—25Mo0—4Zr0—2合金微观结构对力学性能的影响. 物理学报, 2005, 54(9): 4395-4399. doi: 10.7498/aps.54.4395
计量
  • 文章访问数:  3539
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-25
  • 修回日期:  2023-01-02
  • 上网日期:  2023-02-09
  • 刊出日期:  2023-04-05

/

返回文章
返回