-
经典放电理论(Townsend和流注理论)解释纳秒脉冲气体放电存在局限性, 近年来基于高能电子逃逸的纳秒脉冲气体放电理论研究受到广泛关注. 但是目前对大气压空气纳秒脉冲板-板放电中逃逸电子产生机理研究仍较少, 严重阻碍了纳秒脉冲放电等离子体的应用发展. 本文利用一维粒子模型, 对幅值为20 kV的纳秒脉冲电压驱动下, 间隙长为1 mm的板-板电极之间的大气压空气放电中逃逸电子的产生机理进行了数值模拟研究. 结果表明, 在空间电荷动力学行为的影响下, 板-板电极之间出现了增强电场区域, 使得电子可以满足电子逃逸判据而进入逃逸模式. 此外, 还观察到放电通道前逃逸电子的预电离效应导致了二次电子崩的产生, 随着二次电子崩与放电通道不断汇聚, 引导并加速了放电通道的发展, 最终导致气隙击穿. 本研究进一步揭示了纳秒脉冲板-板放电机理, 拓展了纳秒脉冲气体放电基础理论, 为纳秒脉冲放电等离子体的应用和发展开辟了新的机会.Classical discharge theory (Townsend theory and streamer theory) has limitations in explaining nanosecond pulsed gas discharge. In recent years, the research on nanosecond pulsed gas discharge theory based on the high-energy runaway electrons has attracted extensive attention. But so far, there have been few studies of the generation mechanism of runaway electrons in atmospheric-pressure-air nanosecond pulsed plate-to-plate discharge, which seriously hinders the application and development of nanosecond pulse discharge plasma. In this paper, a one-dimensional implicit particle-in-cell/Monte Carlo collision (PIC/MCC) model is developed to investigate the mechanism of runaway electron generation and breakdown in a 1 mm-long atmospheric-pressure-air gap between the plate electrode and plate electrode driven by a negative nanosecond pulse voltage with an amplitude of 20 kV. The results show that under the influence of space charge dynamic behavior, the electric field enhancement region appears between the plate electrode and plate electrode, so that electrons can satisfy the electron runaway criteria and behaves in the runaway mode. In addition, it is also observed that the pre-ionization effect of the runaway electrons in front of the discharge channel can cause the secondary electron avalanches. As the secondary electrons avalanche and the discharge channel continues to converge, the discharge is guided and accelerated, eventually leading to the breakdown of the air gap. This study further reveals the mechanism of nanosecond pulsed plate-plate discharge, expands the basic theory of nanosecond pulsed gas discharge, and opens up new opportunities for the application and development of nanosecond pulsed discharge plasma.
-
Keywords:
- nanosecond pulse discharge /
- runaway electron /
- electric field enhancement /
- pre-ionization
[1] Bogaerts A, Tu X, Whitehead J C, Centi G, Lefferts L, Guaitella O, Azzolina Jury F, Kim H H, Murphy A B, Schneider W F, Nozaki T, Hicks J C, Rousseau A, Thevenet F, Khacef A, Carreon M 2020 J. Phys. D: Appl. Phys. 53 443001Google Scholar
[2] Wang S, Yang D Z, Zhou R S, Zhou R W, Fang Z, Wang W C, Ostrikov K 2019 Plasma Process. Polym. 17 1900146Google Scholar
[3] Cai Y K, Lyu L, Lu X P 2021 High Volt. 6 1092Google Scholar
[4] Bekeschus S, Favia P, Robert E, Woedtke T V 2019 Plasma Process. Polym. 16 1800033Google Scholar
[5] Huang B D, Zhang C, Zhu W C, Lu X P, Shao T 2021 High Volt. 6 665Google Scholar
[6] Tang J F, Tang M, Zhou D S, Kang P T, Zhu X M, Zhang C H 2019 Plasma Sci. Technol. 21 044001Google Scholar
[7] Zhang S, Wang W C, Yang D Z, Yuan H, Zhao Z L, Sun H, Shao T 2019 Spectrochim. Acta A Mol. Biomol. Spectrosc. 207 294Google Scholar
[8] Shao T, Tarasenko V F, Zhang C, Baksht E K, Zhang D, Erofeev M V, Ren C, Shutko Y V, Yan P 2013 J. Appl. Phys. 113 093301Google Scholar
[9] Shkurenkov I, Burnette D, Lempert W R, Adamovich I V 2014 Plasma Sources Sci. Technol. 23 065003Google Scholar
[10] Yatom S, Gleizer J Z, Levko D, Vekselman V, Gurovich V, Hupf E, Hadas Y, Krasik Y E 2011 Europhys. Lett. 96 65001Google Scholar
[11] Shao T, Wang R X, Zhang C, Yan P 2018 High Volt. 3 14Google Scholar
[12] Kunhardt E E, Byszewski W W 1980 Phys. Rev. A 21 2069Google Scholar
[13] Zhang C, Gu J W, Wang R X, Ma H, Yan P, Shao T 2016 Laser Part. Beams 34 43Google Scholar
[14] Frankel S, Highland V, Sloan T, Dyck O V, Wales W 1966 Nucl. Instrum. Method 44 345Google Scholar
[15] Bratchikov V B, Gagarinov K A, Kostyrya I D, Tarasenko V F, Tkachev A N, Yakovlenko S I 2007 Tech. Phys. 52 856Google Scholar
[16] Byszewski W W, Reinhold G 1982 Phys. Rev. A 26 2826Google Scholar
[17] Kostyrya I D, Tarasenko V F 2015 Plasma Phys. Rep. 41 269Google Scholar
[18] Tarasenko V F 2020 Plasma Sources Sci. Technol. 29 034001Google Scholar
[19] Beloplotov D V, Tarasenko V F, Shklyaev V A, Sorokin D A 2021 J. Phys. D: Appl. Phys. 54 304001Google Scholar
[20] Levko D 2019 J. Appl. Phys. 126 083303Google Scholar
[21] Babaeva N Y, Zhang C, Qiu J T, Hou X M, Tarasenko V F, Shao T 2017 Plasma Sources Sci. Technol. 26 085008Google Scholar
[22] Kozhevnikov V Y, Kozyrev A V, Semeniuk N S 2015 Europhys. Lett. 112 15001Google Scholar
[23] Huang B D, Zhang C, Ren C H, Shao T 2022 Plasma Sources Sci. Technol. 31 114002Google Scholar
[24] Ivanov S N 2013 J. Phys. D: Appl. Phys. 46 285201Google Scholar
[25] Levko D 2012 J. Appl. Phys. 111 083303Google Scholar
[26] Langdon A B, Cohen B I, Friedman A 1983 J. Comput. Phys. 51 107Google Scholar
[27] Ivanov S N, Lisenkov V V 2018 J. Appl. Phys. 124 103304Google Scholar
[28] Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer) pp69–70
[29] Wang H Y, Jiang W, Wang Y N 2010 Plasma Sources Sci. Technol. 19 045023Google Scholar
[30] Friedman A 1990 J. Comput. Phys. 90 292Google Scholar
[31] Nanbu K 2000 IEEE Trans. Plasma Sci. 28 971Google Scholar
[32] Kossyi I A, Kostinsky A Y, Matveyev A A, Silakov V P 1992 Plasma Sources Sci. Technol. 1 207Google Scholar
[33] Lxcat Program of IST-Lisbon Database https://lxcat.net/ [2022-10-10]
[34] Jiang W, Wang H Y, Bi Z H, Wang Y N 2011 Plasma Sources Sci. Technol. 20 035013Google Scholar
[35] Vahedi V, Surendra M 1995 Comput. Phys. Commun. 87 179Google Scholar
[36] Li Y T, Fu Y Y, Liu Z G, Li H D, Wang P, Luo H Y, Zou X B, Wang X X 2022 Plasma Sources Sci. Technol. 31 045027Google Scholar
[37] Mesyats G A, Yalandin M I, Zubarev N M, Sadykova A G, Sharypov K A 2020 Appl. Phys. Lett. 116 063501Google Scholar
[38] Tarasenko V F, Yakovlenko S I 2004 Physics-Uspekhi 47 887Google Scholar
[39] 章程, 马浩, 邵涛, 谢庆, 杨文晋, 严萍 2014 物理学报 638 085208Google Scholar
Zhang C, Ma H, Shao T, Xie Q, Yang W J, Yan P 2014 Acta Phys. Sin. 638 085208Google Scholar
[40] Zubarev N M, Ivanov S N 2017 Plasma Phys. Rep. 44 445Google Scholar
[41] Naidis G V, Tarasenko V F, Babaeva N Y, Lomaev M I 2018 Plasma Sources Sci. Technol. 27 013001Google Scholar
[42] Shao T, Tarasenko V F, Zhang C, Kostyrya I D, Jiang H, Xu R, Rybka D V, Yan P 2011 Appl. Phys. Express 4 066001Google Scholar
[43] Askaryan G A 1975 Proc. (Tr.) P. N. Lebedev Phys. Inst. (USSR) (Engl. Transl.) 66 66
[44] Kozhevnikov V Y, Kozyrev A V, Semeniuk N S 2017 Russ. Phys. J. 60 1425Google Scholar
-
表 1 模型中的化学反应
Table 1. Chemical reactions in the model.
序号 反应方程式 能量损耗阈值/eV 1 e+N2 → e +N2 0 2 e +O2 → e +O2 0 3 e +N2 → e +N2 A(3$ {{\Sigma }}_{\rm{u}}^+ $) 6.169 4 e +N2 → e +N2 B(3$ {{\Pi }} $g) 7.353 5 e +N2 → e +N2 W(3$ \Delta $u) 7.362 6 e +N2 → e +N2 B'(3$ {{\Sigma }}_{\rm{u}}^- $) 8.165 7 e +N2 → e +N2 a'(1$ {{\Sigma }}_{\rm{u}}^+ $) 8.399 8 e +N2 → e +N2 a(1$ \Pi $g) 8.549 9 e +N2 → e +N2 w(1$ \Delta $u) 8.890 10 e +N2 → e +N+N 9.754 11 e +N2 → e +N2 C(3$ \Pi $u) 11.032 12 e +O2 → e +O2 a(1$ \Delta $g) 0.977 13 e +O2 → e +O2 b(1$ \Sigma _{\rm{g}}^+$) 1.627 14 e +O2 → e + O + O 5.58 15 e +O2 → e +O + O1D 8.4 16 e +O2 → e + O1D + O1D 9.97 17 e +N2 → 2e + N${}_2^+ $ 15.58 18 e +O2 → 2e + O${}_2^+ $ 12.06 19 e +O2 → O${}_2^- $ — -
[1] Bogaerts A, Tu X, Whitehead J C, Centi G, Lefferts L, Guaitella O, Azzolina Jury F, Kim H H, Murphy A B, Schneider W F, Nozaki T, Hicks J C, Rousseau A, Thevenet F, Khacef A, Carreon M 2020 J. Phys. D: Appl. Phys. 53 443001Google Scholar
[2] Wang S, Yang D Z, Zhou R S, Zhou R W, Fang Z, Wang W C, Ostrikov K 2019 Plasma Process. Polym. 17 1900146Google Scholar
[3] Cai Y K, Lyu L, Lu X P 2021 High Volt. 6 1092Google Scholar
[4] Bekeschus S, Favia P, Robert E, Woedtke T V 2019 Plasma Process. Polym. 16 1800033Google Scholar
[5] Huang B D, Zhang C, Zhu W C, Lu X P, Shao T 2021 High Volt. 6 665Google Scholar
[6] Tang J F, Tang M, Zhou D S, Kang P T, Zhu X M, Zhang C H 2019 Plasma Sci. Technol. 21 044001Google Scholar
[7] Zhang S, Wang W C, Yang D Z, Yuan H, Zhao Z L, Sun H, Shao T 2019 Spectrochim. Acta A Mol. Biomol. Spectrosc. 207 294Google Scholar
[8] Shao T, Tarasenko V F, Zhang C, Baksht E K, Zhang D, Erofeev M V, Ren C, Shutko Y V, Yan P 2013 J. Appl. Phys. 113 093301Google Scholar
[9] Shkurenkov I, Burnette D, Lempert W R, Adamovich I V 2014 Plasma Sources Sci. Technol. 23 065003Google Scholar
[10] Yatom S, Gleizer J Z, Levko D, Vekselman V, Gurovich V, Hupf E, Hadas Y, Krasik Y E 2011 Europhys. Lett. 96 65001Google Scholar
[11] Shao T, Wang R X, Zhang C, Yan P 2018 High Volt. 3 14Google Scholar
[12] Kunhardt E E, Byszewski W W 1980 Phys. Rev. A 21 2069Google Scholar
[13] Zhang C, Gu J W, Wang R X, Ma H, Yan P, Shao T 2016 Laser Part. Beams 34 43Google Scholar
[14] Frankel S, Highland V, Sloan T, Dyck O V, Wales W 1966 Nucl. Instrum. Method 44 345Google Scholar
[15] Bratchikov V B, Gagarinov K A, Kostyrya I D, Tarasenko V F, Tkachev A N, Yakovlenko S I 2007 Tech. Phys. 52 856Google Scholar
[16] Byszewski W W, Reinhold G 1982 Phys. Rev. A 26 2826Google Scholar
[17] Kostyrya I D, Tarasenko V F 2015 Plasma Phys. Rep. 41 269Google Scholar
[18] Tarasenko V F 2020 Plasma Sources Sci. Technol. 29 034001Google Scholar
[19] Beloplotov D V, Tarasenko V F, Shklyaev V A, Sorokin D A 2021 J. Phys. D: Appl. Phys. 54 304001Google Scholar
[20] Levko D 2019 J. Appl. Phys. 126 083303Google Scholar
[21] Babaeva N Y, Zhang C, Qiu J T, Hou X M, Tarasenko V F, Shao T 2017 Plasma Sources Sci. Technol. 26 085008Google Scholar
[22] Kozhevnikov V Y, Kozyrev A V, Semeniuk N S 2015 Europhys. Lett. 112 15001Google Scholar
[23] Huang B D, Zhang C, Ren C H, Shao T 2022 Plasma Sources Sci. Technol. 31 114002Google Scholar
[24] Ivanov S N 2013 J. Phys. D: Appl. Phys. 46 285201Google Scholar
[25] Levko D 2012 J. Appl. Phys. 111 083303Google Scholar
[26] Langdon A B, Cohen B I, Friedman A 1983 J. Comput. Phys. 51 107Google Scholar
[27] Ivanov S N, Lisenkov V V 2018 J. Appl. Phys. 124 103304Google Scholar
[28] Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer) pp69–70
[29] Wang H Y, Jiang W, Wang Y N 2010 Plasma Sources Sci. Technol. 19 045023Google Scholar
[30] Friedman A 1990 J. Comput. Phys. 90 292Google Scholar
[31] Nanbu K 2000 IEEE Trans. Plasma Sci. 28 971Google Scholar
[32] Kossyi I A, Kostinsky A Y, Matveyev A A, Silakov V P 1992 Plasma Sources Sci. Technol. 1 207Google Scholar
[33] Lxcat Program of IST-Lisbon Database https://lxcat.net/ [2022-10-10]
[34] Jiang W, Wang H Y, Bi Z H, Wang Y N 2011 Plasma Sources Sci. Technol. 20 035013Google Scholar
[35] Vahedi V, Surendra M 1995 Comput. Phys. Commun. 87 179Google Scholar
[36] Li Y T, Fu Y Y, Liu Z G, Li H D, Wang P, Luo H Y, Zou X B, Wang X X 2022 Plasma Sources Sci. Technol. 31 045027Google Scholar
[37] Mesyats G A, Yalandin M I, Zubarev N M, Sadykova A G, Sharypov K A 2020 Appl. Phys. Lett. 116 063501Google Scholar
[38] Tarasenko V F, Yakovlenko S I 2004 Physics-Uspekhi 47 887Google Scholar
[39] 章程, 马浩, 邵涛, 谢庆, 杨文晋, 严萍 2014 物理学报 638 085208Google Scholar
Zhang C, Ma H, Shao T, Xie Q, Yang W J, Yan P 2014 Acta Phys. Sin. 638 085208Google Scholar
[40] Zubarev N M, Ivanov S N 2017 Plasma Phys. Rep. 44 445Google Scholar
[41] Naidis G V, Tarasenko V F, Babaeva N Y, Lomaev M I 2018 Plasma Sources Sci. Technol. 27 013001Google Scholar
[42] Shao T, Tarasenko V F, Zhang C, Kostyrya I D, Jiang H, Xu R, Rybka D V, Yan P 2011 Appl. Phys. Express 4 066001Google Scholar
[43] Askaryan G A 1975 Proc. (Tr.) P. N. Lebedev Phys. Inst. (USSR) (Engl. Transl.) 66 66
[44] Kozhevnikov V Y, Kozyrev A V, Semeniuk N S 2017 Russ. Phys. J. 60 1425Google Scholar
计量
- 文章访问数: 2989
- PDF下载量: 86
- 被引次数: 0