搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气压空气纳秒脉冲板-板放电中逃逸电子产生机理

肖江平 戴栋 Victor F. Tarasenko 邵涛

引用本文:
Citation:

大气压空气纳秒脉冲板-板放电中逃逸电子产生机理

肖江平, 戴栋, Victor F. Tarasenko, 邵涛

Mechanism of runaway electron generation in nanosecond pulsed plate-plate discharge at atmospheric-pressure air

Xiao Jiang-Ping, Dai Dong, Victor F. Tarasenko, Shao Tao
PDF
HTML
导出引用
  • 经典放电理论(Townsend和流注理论)解释纳秒脉冲气体放电存在局限性, 近年来基于高能电子逃逸的纳秒脉冲气体放电理论研究受到广泛关注. 但是目前对大气压空气纳秒脉冲板-板放电中逃逸电子产生机理研究仍较少, 严重阻碍了纳秒脉冲放电等离子体的应用发展. 本文利用一维粒子模型, 对幅值为20 kV的纳秒脉冲电压驱动下, 间隙长为1 mm的板-板电极之间的大气压空气放电中逃逸电子的产生机理进行了数值模拟研究. 结果表明, 在空间电荷动力学行为的影响下, 板-板电极之间出现了增强电场区域, 使得电子可以满足电子逃逸判据而进入逃逸模式. 此外, 还观察到放电通道前逃逸电子的预电离效应导致了二次电子崩的产生, 随着二次电子崩与放电通道不断汇聚, 引导并加速了放电通道的发展, 最终导致气隙击穿. 本研究进一步揭示了纳秒脉冲板-板放电机理, 拓展了纳秒脉冲气体放电基础理论, 为纳秒脉冲放电等离子体的应用和发展开辟了新的机会.
    Classical discharge theory (Townsend theory and streamer theory) has limitations in explaining nanosecond pulsed gas discharge. In recent years, the research on nanosecond pulsed gas discharge theory based on the high-energy runaway electrons has attracted extensive attention. But so far, there have been few studies of the generation mechanism of runaway electrons in atmospheric-pressure-air nanosecond pulsed plate-to-plate discharge, which seriously hinders the application and development of nanosecond pulse discharge plasma. In this paper, a one-dimensional implicit particle-in-cell/Monte Carlo collision (PIC/MCC) model is developed to investigate the mechanism of runaway electron generation and breakdown in a 1 mm-long atmospheric-pressure-air gap between the plate electrode and plate electrode driven by a negative nanosecond pulse voltage with an amplitude of 20 kV. The results show that under the influence of space charge dynamic behavior, the electric field enhancement region appears between the plate electrode and plate electrode, so that electrons can satisfy the electron runaway criteria and behaves in the runaway mode. In addition, it is also observed that the pre-ionization effect of the runaway electrons in front of the discharge channel can cause the secondary electron avalanches. As the secondary electrons avalanche and the discharge channel continues to converge, the discharge is guided and accelerated, eventually leading to the breakdown of the air gap. This study further reveals the mechanism of nanosecond pulsed plate-plate discharge, expands the basic theory of nanosecond pulsed gas discharge, and opens up new opportunities for the application and development of nanosecond pulsed discharge plasma.
      通信作者: 戴栋, ddai@scut.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFE0114700)和国家自然科学基金(批准号: 51877086)资助的课题.
      Corresponding author: Dai Dong, ddai@scut.edu.cn
    • Funds: Project supported by the National Key Research and Development Plan of China (Grant No. 2021YFE0114700) and the National Natural Science Foundation of China (Grant No. 51877086).
    [1]

    Bogaerts A, Tu X, Whitehead J C, Centi G, Lefferts L, Guaitella O, Azzolina Jury F, Kim H H, Murphy A B, Schneider W F, Nozaki T, Hicks J C, Rousseau A, Thevenet F, Khacef A, Carreon M 2020 J. Phys. D: Appl. Phys. 53 443001Google Scholar

    [2]

    Wang S, Yang D Z, Zhou R S, Zhou R W, Fang Z, Wang W C, Ostrikov K 2019 Plasma Process. Polym. 17 1900146Google Scholar

    [3]

    Cai Y K, Lyu L, Lu X P 2021 High Volt. 6 1092Google Scholar

    [4]

    Bekeschus S, Favia P, Robert E, Woedtke T V 2019 Plasma Process. Polym. 16 1800033Google Scholar

    [5]

    Huang B D, Zhang C, Zhu W C, Lu X P, Shao T 2021 High Volt. 6 665Google Scholar

    [6]

    Tang J F, Tang M, Zhou D S, Kang P T, Zhu X M, Zhang C H 2019 Plasma Sci. Technol. 21 044001Google Scholar

    [7]

    Zhang S, Wang W C, Yang D Z, Yuan H, Zhao Z L, Sun H, Shao T 2019 Spectrochim. Acta A Mol. Biomol. Spectrosc. 207 294Google Scholar

    [8]

    Shao T, Tarasenko V F, Zhang C, Baksht E K, Zhang D, Erofeev M V, Ren C, Shutko Y V, Yan P 2013 J. Appl. Phys. 113 093301Google Scholar

    [9]

    Shkurenkov I, Burnette D, Lempert W R, Adamovich I V 2014 Plasma Sources Sci. Technol. 23 065003Google Scholar

    [10]

    Yatom S, Gleizer J Z, Levko D, Vekselman V, Gurovich V, Hupf E, Hadas Y, Krasik Y E 2011 Europhys. Lett. 96 65001Google Scholar

    [11]

    Shao T, Wang R X, Zhang C, Yan P 2018 High Volt. 3 14Google Scholar

    [12]

    Kunhardt E E, Byszewski W W 1980 Phys. Rev. A 21 2069Google Scholar

    [13]

    Zhang C, Gu J W, Wang R X, Ma H, Yan P, Shao T 2016 Laser Part. Beams 34 43Google Scholar

    [14]

    Frankel S, Highland V, Sloan T, Dyck O V, Wales W 1966 Nucl. Instrum. Method 44 345Google Scholar

    [15]

    Bratchikov V B, Gagarinov K A, Kostyrya I D, Tarasenko V F, Tkachev A N, Yakovlenko S I 2007 Tech. Phys. 52 856Google Scholar

    [16]

    Byszewski W W, Reinhold G 1982 Phys. Rev. A 26 2826Google Scholar

    [17]

    Kostyrya I D, Tarasenko V F 2015 Plasma Phys. Rep. 41 269Google Scholar

    [18]

    Tarasenko V F 2020 Plasma Sources Sci. Technol. 29 034001Google Scholar

    [19]

    Beloplotov D V, Tarasenko V F, Shklyaev V A, Sorokin D A 2021 J. Phys. D: Appl. Phys. 54 304001Google Scholar

    [20]

    Levko D 2019 J. Appl. Phys. 126 083303Google Scholar

    [21]

    Babaeva N Y, Zhang C, Qiu J T, Hou X M, Tarasenko V F, Shao T 2017 Plasma Sources Sci. Technol. 26 085008Google Scholar

    [22]

    Kozhevnikov V Y, Kozyrev A V, Semeniuk N S 2015 Europhys. Lett. 112 15001Google Scholar

    [23]

    Huang B D, Zhang C, Ren C H, Shao T 2022 Plasma Sources Sci. Technol. 31 114002Google Scholar

    [24]

    Ivanov S N 2013 J. Phys. D: Appl. Phys. 46 285201Google Scholar

    [25]

    Levko D 2012 J. Appl. Phys. 111 083303Google Scholar

    [26]

    Langdon A B, Cohen B I, Friedman A 1983 J. Comput. Phys. 51 107Google Scholar

    [27]

    Ivanov S N, Lisenkov V V 2018 J. Appl. Phys. 124 103304Google Scholar

    [28]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer) pp69–70

    [29]

    Wang H Y, Jiang W, Wang Y N 2010 Plasma Sources Sci. Technol. 19 045023Google Scholar

    [30]

    Friedman A 1990 J. Comput. Phys. 90 292Google Scholar

    [31]

    Nanbu K 2000 IEEE Trans. Plasma Sci. 28 971Google Scholar

    [32]

    Kossyi I A, Kostinsky A Y, Matveyev A A, Silakov V P 1992 Plasma Sources Sci. Technol. 1 207Google Scholar

    [33]

    Lxcat Program of IST-Lisbon Database https://lxcat.net/ [2022-10-10]

    [34]

    Jiang W, Wang H Y, Bi Z H, Wang Y N 2011 Plasma Sources Sci. Technol. 20 035013Google Scholar

    [35]

    Vahedi V, Surendra M 1995 Comput. Phys. Commun. 87 179Google Scholar

    [36]

    Li Y T, Fu Y Y, Liu Z G, Li H D, Wang P, Luo H Y, Zou X B, Wang X X 2022 Plasma Sources Sci. Technol. 31 045027Google Scholar

    [37]

    Mesyats G A, Yalandin M I, Zubarev N M, Sadykova A G, Sharypov K A 2020 Appl. Phys. Lett. 116 063501Google Scholar

    [38]

    Tarasenko V F, Yakovlenko S I 2004 Physics-Uspekhi 47 887Google Scholar

    [39]

    章程, 马浩, 邵涛, 谢庆, 杨文晋, 严萍 2014 物理学报 638 085208Google Scholar

    Zhang C, Ma H, Shao T, Xie Q, Yang W J, Yan P 2014 Acta Phys. Sin. 638 085208Google Scholar

    [40]

    Zubarev N M, Ivanov S N 2017 Plasma Phys. Rep. 44 445Google Scholar

    [41]

    Naidis G V, Tarasenko V F, Babaeva N Y, Lomaev M I 2018 Plasma Sources Sci. Technol. 27 013001Google Scholar

    [42]

    Shao T, Tarasenko V F, Zhang C, Kostyrya I D, Jiang H, Xu R, Rybka D V, Yan P 2011 Appl. Phys. Express 4 066001Google Scholar

    [43]

    Askaryan G A 1975 Proc. (Tr.) P. N. Lebedev Phys. Inst. (USSR) (Engl. Transl.) 66 66

    [44]

    Kozhevnikov V Y, Kozyrev A V, Semeniuk N S 2017 Russ. Phys. J. 60 1425Google Scholar

  • 图 1  (a)几何模型示意图, dg代表空气间隙长度; (b)纳秒脉冲电压波形

    Fig. 1.  (a) Schematic diagram of the model, dg represents the air gap width; (b) the waveform of nanosecond pulse voltage.

    图 2  隐式PIC/MCC模型计算流程图

    Fig. 2.  Computational flow chart of the implicit PIC/MCC model.

    图 3  F(ε)/e对电子能量的依赖曲线

    Fig. 3.  Dependence of F(ε)/e on the electron energy.

    图 4  330 ps时气隙中的实际电场, 外施均匀电场和净电荷密度的分布

    Fig. 4.  Distribution of the actual electric field, the applied external uniform electric field and the net charge density at 330 ps in the air gap.

    图 5  最大能量电子的位置和能量

    Fig. 5.  Positions and energies of maximum energy electrons.

    图 6  400 ps时气隙中净电荷密度和实际电场分布

    Fig. 6.  Distribution of the net charge density and the actual electric field at 400 ps in the air gap.

    图 7  到达阳极的电子数量

    Fig. 7.  Number of electrons reaching the anode.

    图 8  气隙中电子数密度(a)和电场(b)的分布, 最大能量电子的位置用三角形标记

    Fig. 8.  Distribution of the electron density (a) and the electric field (b) in the air gap. The positions of maximum energy electrons are marked with triangles.

    图 9  342 ps时放电通道头部和阳极之间所有电子的能量和位置分布

    Fig. 9.  Energy and position of all electrons (macroparticles) between the head of the discharge channel and the anode at 342 ps

    图 10  342 ps时放电通道头部和阳极之间的逃逸电子和预电离电子的数密度分布

    Fig. 10.  Number densities of runaway and pre-ionized electrons between the head of the discharge channel and the anode at 342 ps.

    图 11  电子数密度的空间分布

    Fig. 11.  Spatial distribution of electron number density.

    表 1  模型中的化学反应

    Table 1.  Chemical reactions in the model.

    序号反应方程式能量损耗阈值/eV
    1e+N2 → e +N20
    2e +O2 → e +O20
    3e +N2 → e +N2 A(3$ {{\Sigma }}_{\rm{u}}^+ $)6.169
    4e +N2 → e +N2 B(3$ {{\Pi }} $g)7.353
    5e +N2 → e +N2 W(3$ \Delta $u)7.362
    6e +N2 → e +N2 B'(3$ {{\Sigma }}_{\rm{u}}^- $)8.165
    7e +N2 → e +N2 a'(1$ {{\Sigma }}_{\rm{u}}^+ $)8.399
    8e +N2 → e +N2 a(1$ \Pi $g)8.549
    9e +N2 → e +N2 w(1$ \Delta $u)8.890
    10e +N2 → e +N+N9.754
    11e +N2 → e +N2 C(3$ \Pi $u)11.032
    12e +O2 → e +O2 a(1$ \Delta $g)0.977
    13e +O2 → e +O2 b(1$ \Sigma _{\rm{g}}^+$)1.627
    14e +O2 → e + O + O5.58
    15e +O2 → e +O + O1D8.4
    16e +O2 → e + O1D + O1D9.97
    17e +N2 → 2e + N${}_2^+ $15.58
    18e +O2 → 2e + O${}_2^+ $12.06
    19e +O2 → O${}_2^- $
    下载: 导出CSV
  • [1]

    Bogaerts A, Tu X, Whitehead J C, Centi G, Lefferts L, Guaitella O, Azzolina Jury F, Kim H H, Murphy A B, Schneider W F, Nozaki T, Hicks J C, Rousseau A, Thevenet F, Khacef A, Carreon M 2020 J. Phys. D: Appl. Phys. 53 443001Google Scholar

    [2]

    Wang S, Yang D Z, Zhou R S, Zhou R W, Fang Z, Wang W C, Ostrikov K 2019 Plasma Process. Polym. 17 1900146Google Scholar

    [3]

    Cai Y K, Lyu L, Lu X P 2021 High Volt. 6 1092Google Scholar

    [4]

    Bekeschus S, Favia P, Robert E, Woedtke T V 2019 Plasma Process. Polym. 16 1800033Google Scholar

    [5]

    Huang B D, Zhang C, Zhu W C, Lu X P, Shao T 2021 High Volt. 6 665Google Scholar

    [6]

    Tang J F, Tang M, Zhou D S, Kang P T, Zhu X M, Zhang C H 2019 Plasma Sci. Technol. 21 044001Google Scholar

    [7]

    Zhang S, Wang W C, Yang D Z, Yuan H, Zhao Z L, Sun H, Shao T 2019 Spectrochim. Acta A Mol. Biomol. Spectrosc. 207 294Google Scholar

    [8]

    Shao T, Tarasenko V F, Zhang C, Baksht E K, Zhang D, Erofeev M V, Ren C, Shutko Y V, Yan P 2013 J. Appl. Phys. 113 093301Google Scholar

    [9]

    Shkurenkov I, Burnette D, Lempert W R, Adamovich I V 2014 Plasma Sources Sci. Technol. 23 065003Google Scholar

    [10]

    Yatom S, Gleizer J Z, Levko D, Vekselman V, Gurovich V, Hupf E, Hadas Y, Krasik Y E 2011 Europhys. Lett. 96 65001Google Scholar

    [11]

    Shao T, Wang R X, Zhang C, Yan P 2018 High Volt. 3 14Google Scholar

    [12]

    Kunhardt E E, Byszewski W W 1980 Phys. Rev. A 21 2069Google Scholar

    [13]

    Zhang C, Gu J W, Wang R X, Ma H, Yan P, Shao T 2016 Laser Part. Beams 34 43Google Scholar

    [14]

    Frankel S, Highland V, Sloan T, Dyck O V, Wales W 1966 Nucl. Instrum. Method 44 345Google Scholar

    [15]

    Bratchikov V B, Gagarinov K A, Kostyrya I D, Tarasenko V F, Tkachev A N, Yakovlenko S I 2007 Tech. Phys. 52 856Google Scholar

    [16]

    Byszewski W W, Reinhold G 1982 Phys. Rev. A 26 2826Google Scholar

    [17]

    Kostyrya I D, Tarasenko V F 2015 Plasma Phys. Rep. 41 269Google Scholar

    [18]

    Tarasenko V F 2020 Plasma Sources Sci. Technol. 29 034001Google Scholar

    [19]

    Beloplotov D V, Tarasenko V F, Shklyaev V A, Sorokin D A 2021 J. Phys. D: Appl. Phys. 54 304001Google Scholar

    [20]

    Levko D 2019 J. Appl. Phys. 126 083303Google Scholar

    [21]

    Babaeva N Y, Zhang C, Qiu J T, Hou X M, Tarasenko V F, Shao T 2017 Plasma Sources Sci. Technol. 26 085008Google Scholar

    [22]

    Kozhevnikov V Y, Kozyrev A V, Semeniuk N S 2015 Europhys. Lett. 112 15001Google Scholar

    [23]

    Huang B D, Zhang C, Ren C H, Shao T 2022 Plasma Sources Sci. Technol. 31 114002Google Scholar

    [24]

    Ivanov S N 2013 J. Phys. D: Appl. Phys. 46 285201Google Scholar

    [25]

    Levko D 2012 J. Appl. Phys. 111 083303Google Scholar

    [26]

    Langdon A B, Cohen B I, Friedman A 1983 J. Comput. Phys. 51 107Google Scholar

    [27]

    Ivanov S N, Lisenkov V V 2018 J. Appl. Phys. 124 103304Google Scholar

    [28]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer) pp69–70

    [29]

    Wang H Y, Jiang W, Wang Y N 2010 Plasma Sources Sci. Technol. 19 045023Google Scholar

    [30]

    Friedman A 1990 J. Comput. Phys. 90 292Google Scholar

    [31]

    Nanbu K 2000 IEEE Trans. Plasma Sci. 28 971Google Scholar

    [32]

    Kossyi I A, Kostinsky A Y, Matveyev A A, Silakov V P 1992 Plasma Sources Sci. Technol. 1 207Google Scholar

    [33]

    Lxcat Program of IST-Lisbon Database https://lxcat.net/ [2022-10-10]

    [34]

    Jiang W, Wang H Y, Bi Z H, Wang Y N 2011 Plasma Sources Sci. Technol. 20 035013Google Scholar

    [35]

    Vahedi V, Surendra M 1995 Comput. Phys. Commun. 87 179Google Scholar

    [36]

    Li Y T, Fu Y Y, Liu Z G, Li H D, Wang P, Luo H Y, Zou X B, Wang X X 2022 Plasma Sources Sci. Technol. 31 045027Google Scholar

    [37]

    Mesyats G A, Yalandin M I, Zubarev N M, Sadykova A G, Sharypov K A 2020 Appl. Phys. Lett. 116 063501Google Scholar

    [38]

    Tarasenko V F, Yakovlenko S I 2004 Physics-Uspekhi 47 887Google Scholar

    [39]

    章程, 马浩, 邵涛, 谢庆, 杨文晋, 严萍 2014 物理学报 638 085208Google Scholar

    Zhang C, Ma H, Shao T, Xie Q, Yang W J, Yan P 2014 Acta Phys. Sin. 638 085208Google Scholar

    [40]

    Zubarev N M, Ivanov S N 2017 Plasma Phys. Rep. 44 445Google Scholar

    [41]

    Naidis G V, Tarasenko V F, Babaeva N Y, Lomaev M I 2018 Plasma Sources Sci. Technol. 27 013001Google Scholar

    [42]

    Shao T, Tarasenko V F, Zhang C, Kostyrya I D, Jiang H, Xu R, Rybka D V, Yan P 2011 Appl. Phys. Express 4 066001Google Scholar

    [43]

    Askaryan G A 1975 Proc. (Tr.) P. N. Lebedev Phys. Inst. (USSR) (Engl. Transl.) 66 66

    [44]

    Kozhevnikov V Y, Kozyrev A V, Semeniuk N S 2017 Russ. Phys. J. 60 1425Google Scholar

  • [1] 刘在浩, 刘颖华, 许博坪, 尹培琪, 李静, 王屹山, 赵卫, 段忆翔, 汤洁. 大气压氦气预电离直流辉光放电二维仿真研究. 物理学报, 2024, 73(1): 015101. doi: 10.7498/aps.73.20230712
    [2] 王倩, 范元媛, 赵江山, 刘斌, 亓岩, 颜博霞, 王延伟, 周密, 韩哲, 崔惠绒. 准分子激光器预电离过程影响分析. 物理学报, 2023, 72(19): 194201. doi: 10.7498/aps.72.20230731
    [3] 郭雨怡, 石富坤, 王群, 季振宇, 庄杰. 高压纳秒脉冲电场的细胞器生物电效应综述. 物理学报, 2022, 71(6): 068701. doi: 10.7498/aps.71.20211850
    [4] 李元, 李林波, 温嘉烨, 倪正全, 张冠军. 基于电致伸缩效应的水中纳秒脉冲放电起始机制. 物理学报, 2021, 70(2): 024701. doi: 10.7498/aps.70.20201048
    [5] 侯兴民, 章程, 邱锦涛, 顾建伟, 王瑞雪, 邵涛. 大气压管板结构纳秒脉冲放电中时域X射线研究. 物理学报, 2017, 66(10): 105204. doi: 10.7498/aps.66.105204
    [6] 章程, 马浩, 邵涛, 谢庆, 杨文晋, 严萍. 纳秒脉冲气体放电中逃逸电子束流的研究. 物理学报, 2014, 63(8): 085208. doi: 10.7498/aps.63.085208
    [7] 卢洪伟, 查学军, 胡立群, 林士耀, 周瑞杰, 罗家融, 钟方川. HT-7托卡马克slide-away放电充气对等离子体行为的影响. 物理学报, 2012, 61(7): 075202. doi: 10.7498/aps.61.075202
    [8] 卢洪伟, 胡立群, 周瑞杰, 许平, 钟国强, 林士耀, 王少锋. HT-7 Tokamak离子回旋波和低杂波等离子体逃逸电子行为研究. 物理学报, 2010, 59(10): 7175-7181. doi: 10.7498/aps.59.7175
    [9] 刘辉, 吴勃英, 鄂鹏, 段萍. ATON型Hall推力器缓冲区预电离问题研究. 物理学报, 2010, 59(10): 7203-7208. doi: 10.7498/aps.59.7203
    [10] 卢洪伟, 胡立群, 林士耀, 钟国强, 周瑞杰, 张继宗. HT-7托卡马克等离子体slide-away放电研究. 物理学报, 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [11] 吕晓桂, 任春生, 马腾才, 朱海龙, 钱沐扬, 王德真. 石英管对空气中锥-板结构纳秒脉冲放电的影响. 物理学报, 2010, 59(11): 7917-7921. doi: 10.7498/aps.59.7917
    [12] 张娜珍, 仓怀文, 王卫国, 苗书一, 金峰, 吴庆浩, 花磊, 李海洋. 乙醚团簇在纳秒激光场中的多价电离及其电子能量分布的研究. 物理学报, 2009, 58(7): 4556-4562. doi: 10.7498/aps.58.4556
    [13] 韩敬华, 冯国英, 杨李茗, 张秋慧, 贾 俊, 李 刚, 朱启华, 周寿桓. 纳秒激光脉冲在空气中聚焦的临界自由电子密度问题. 物理学报, 2008, 57(10): 6304-6310. doi: 10.7498/aps.57.6304
    [14] 肖 雪, 李海洋, 罗晓琳, 牛冬梅, 温丽华, 王 宾, 梁 峰, 侯可勇, 董 璨, 邵士勇. 纳秒强激光中丙酮团簇增强的多价电离现象. 物理学报, 2006, 55(2): 661-666. doi: 10.7498/aps.55.661
    [15] 邵 涛, 孙广生, 严 萍, 谷 琛, 张适昌. 纳秒脉冲下高能量快电子逃逸过程的计算. 物理学报, 2006, 55(11): 5964-5968. doi: 10.7498/aps.55.5964
    [16] 何 峰, 余 玮, 徐 涵, 陆培祥. 相对论飞秒激光脉冲在真空中对预加速电子的加速. 物理学报, 2005, 54(9): 4203-4207. doi: 10.7498/aps.54.4203
    [17] 罗晓琳, 孔祥蕾, 牛冬梅, 渠洪波, 李海洋. 团簇增强的纳秒激光电离产生Xez+(z≤20)高价离子. 物理学报, 2005, 54(2): 606-611. doi: 10.7498/aps.54.606
    [18] 程兆谷, 李现勤, 柴雄良, 高海军, 刘翠青. 预电离脉冲群开关技术高功率脉冲CO2激光器. 物理学报, 2004, 53(5): 1362-1366. doi: 10.7498/aps.53.1362
    [19] 王训春, 邱锡钧, 郑丽萍. 相对相位对双色激光场中线性多原子分子离子增强电离行为的影响. 物理学报, 2001, 50(11): 2155-2158. doi: 10.7498/aps.50.2155
    [20] 郑丽萍, 邱锡钧. 光强、频率对强激光场中的多原子分子离子增强电离行为的影响. 物理学报, 2000, 49(10): 1965-1968. doi: 10.7498/aps.49.1965
计量
  • 文章访问数:  2989
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-20
  • 修回日期:  2023-03-19
  • 上网日期:  2023-03-27
  • 刊出日期:  2023-05-20

/

返回文章
返回