搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自适应光学系统最优模式增益的快速估计方法

陈克乐 周家辉 韩文雨 饶学军 郭友明 饶长辉

引用本文:
Citation:

自适应光学系统最优模式增益的快速估计方法

陈克乐, 周家辉, 韩文雨, 饶学军, 郭友明, 饶长辉

Fast estimation method of optimal modal gain for adaptive optical system

Chen Ke-Le, Zhou Jia-Hui, Han Wen-Yu, Rao Xue-Jun, Guo You-Ming, Rao Chang-Hui
PDF
HTML
导出引用
  • 在自适应光学系统中, 最优模式控制方法首先通过对波前像差进行模式分解, 再分别施加不同带宽的比例积分控制以实现较统一带宽模式控制更优的闭环效果. 最优模式增益通常需要基于自适应光学系统的传递函数模型、实测的扰动和噪声的功率谱密度进行遍历求解获取, 这一过程通常需要较长的时间. 由于大气湍流统计特性的时变性, 所求解的最优模式增益的时效性难以保证. 为此, 本文提出了一种基于二次曲线拟合的最优模式增益快速估计方法, 仅通过3个数据点的闭环残差计算来估计单项模式的最优增益. 仿真和实验结果表明, 所提方法可以较准确地求解最优模式增益, 有效抑制高阶波前像差. 同时, 由于算法的时间复杂度降低, 相比于基于参数遍历的方法, 最优模式增益估计过程所花费的时间缩短了约95.3%, 有利于保证最优模式增益的时效性.
    In an adaptive optical system, the optimal modal control method refers to applying proportional integral control of different bandwidths to the wavefront aberrations after modal decomposition to achieve better closed-loop results than the unified bandwidth modal control. The optimal modal gain usually needs to be obtained by ergodic solution based on the transfer function model of the adaptive optical system, the measured disturbance power spectral density, and the noise power spectral density, which usually takes a long time. Owing to the time-varying statistical characteristics of atmospheric turbulence, it is difficult to ensure the timeliness of the optimal modal gain. Therefore, we propose a method of fast estimating optimal modal gain based on quadratic polynomial fitting. In the method, it is only necessary to choose three reasonable gain coefficients and calculate their corresponding closed-loop residual errors respectively in order to estimate the optimal gain of single mode. The simulated slope data used in this work are cited from Lijiang 1.8 m adaptive telescope system, which consists of a 241-unit deformable secondary mirror and a Shaker-Hartmann wavefront sensor with 192 sub-apertures, with the first 135-order modes corrected by modal method. Our experiment is to test directly on-line on this system. The results show that under the same atmospheric environment, the proposed method can accurately estimate the optimal modal gain in a very short time and effectively suppress the high-order wavefront aberration. At the same time, owing to the reduced time complexity of the algorithm, the improved optimal modal gain estimation method takes only 0.33 s. Comparatively, it will take 7.08 s to obtain the optimal modal gain coefficient by using the parameter traversal method. Therefore the time spent on obtaining the optimal modal gain is shortened by about 95.3%, which is easier to meet the real-time requirements of the telescope, and beneficial to the adaptive optics system with more high-order modes. For the future adaptive optics system with more than one-thousand units, the proposed method can update the optimal gain to the second level, while the traversal method can only reach the minute level.
      通信作者: 郭友明, guoyouming@ioe.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 12173041, 11733005)、中国科学院青年创新促进会(批准号: 2020376)和中国科学院光电技术研究所前沿部署项目(批准号: C21K002)资助的课题.
      Corresponding author: Guo You-Ming, guoyouming@ioe.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12173041, 11733005), the Youth Innovation Promotion Association, Chinese Academy of Sciences, China (Grant No. 2020376), and the Frontier Research Fund of Institute of Optics and Electronics, Chinese Academy of Sciences, China (Grant No. C21K002).
    [1]

    姜文汉 2018 光电工程 45 7Google Scholar

    Jiang W H 2018 Opto. Electron. Eng. 45 7Google Scholar

    [2]

    饶长辉, 朱磊, 张兰强, 饶学军, 鲍华, 孔林, 郭友明, 钟立波, 马学安, 李梅, 王成, 张小军, 樊新龙, 王晓云, 凡木文, 陈东红, 冯忠毅 2018 光电工程 45 22Google Scholar

    Rao C H, Zhu L, Zhang L Q, Rao X J, Bao H, Kong L, Guo Y M, Zhong L B, Ma X A, Li M, Wang C, Zhang X J, Fan X L, Wang X Y, Fan M W, Chen D H, Feng Z Y 2018 Opto. Electron. Eng 45 22Google Scholar

    [3]

    Rao C H, Gu N T, Rao X J, et al. 2020 Sci. China-Phys. Mech. Astron. 63 109631Google Scholar

    [4]

    Luo Q, Huang L H, Gu N T, Rao C H 2012 Chin. Phys. B 21 094201Google Scholar

    [5]

    Guo Y M, Zhong L B, Min L, Wang J Y, Wu Y, Chen K L, Wei K, Rao C H 2022 Opto-Electron. Adv. 5 200082Google Scholar

    [6]

    宁禹, 余浩, 周虹, 饶长辉, 姜文汉 2009 物理学报 58 4717Google Scholar

    Ning Y, Yu H, Zhou H, Rao C H, Jiang W H 2009 Acta Phys. Sin. 58 4717Google Scholar

    [7]

    李新阳, 姜文汉, 王春红, 鲜浩 2001 光学学报 21 283Google Scholar

    Li X Y, Jiang W H, Wang C H, Xian H 2001 Acta Opt. Sin. 21 283Google Scholar

    [8]

    颜召军, 李新阳, 饶长辉 2011 光学学报 31 0101003Google Scholar

    Yan Z J, Li X Y, Rao C H 2011 Acta Opt. Sin. 31 0101003Google Scholar

    [9]

    颜召军, 李新阳, 饶长辉 2013 光学学报 33 0301002Google Scholar

    Yan Z J, Li X Y, Rao C H 2013 Acta Opt. Sin. 33 0301002Google Scholar

    [10]

    Gendron E, Léna P 1994 Astron. Astrophys. 291 337

    [11]

    Gendron E, Léna P 1995 Astron. Astrophys. Suppl. S. 111 153

    [12]

    Dessenne C, Madec P Y, Rousset G 1997 Opt. Lett. 22 1535Google Scholar

    [13]

    Dessenne C, Madec P Y, Rousset G 1998 Appl. Opt. 37 4623Google Scholar

    [14]

    Poyneer L A, Palmer D W, Macintosh B, et al. 2016 Appl. Opt. 55 323Google Scholar

    [15]

    Wang J Y, Guo Y M, Kong L, Zhang L Q, Gu N T, Chen K L, Rao C H 2020 Monthly Notices of the Royal Astronomical Society 496 5126Google Scholar

    [16]

    王佳英, 郭友明, 孔林, 陈克乐, 饶长辉 2020 激光与光电子学进展 57 230101Google Scholar

    Wang J Y, Guo Y M, Kong L, Chen K L, Rao C H 2020 Laser & Optoelectr. Pro. 57 230101Google Scholar

    [17]

    Noll R 1976 J. Opt. Soc. Am. A 66 207Google Scholar

    [18]

    高玮玮, 沈建新, 李邦明, 梁春 2010 光谱学与光谱分析 30 2232Google Scholar

    Gao W W, Shen J C, Li B M, Liang C 2010 Spectrosc. Spect. Anal. 30 2232Google Scholar

    [19]

    郭友明, 马晓燠, 饶长辉 2014 物理学报 63 069502Google Scholar

    Guo Y M, Ma X Y, Rao C H 2014 Acta Phys. Sin. 63 069502Google Scholar

    [20]

    饶长辉, 姜文汉 1996 强激光与粒子束 8 469

    Rao C H, Jiang W H 1996 High Power Laser Partic. Beams 8 469

    [21]

    李新阳, 姜文汉 2000 光学学报 20 1328Google Scholar

    Li X Y, Jiang W H 2000 Acta Opt. Sin. 20 1328Google Scholar

    [22]

    Wei K, Zhang X J, Xian H, Ma W L, Zhang A, Zhou L C, Guan C L, Li M, Chen D H, Chen S Q, Liao Z, Rao C H, Zhang Y D 2010 Chin. Opt. Lett. 8 1019Google Scholar

    [23]

    Guo Y M, Zhang A, Fan X L, Rao C H, Wei L, Xian H, Wei K, Zhang X J, Guan C L, Li M, Zhou L C, Jin K, Zhang J B, Deng J J, Zhou L F, Chen H, Zhang X J, Zhang Y D 2016 Opt. Lett. 41 5712Google Scholar

    [24]

    Guo Y M, Wu Y, Li Y, Rao X J, Rao C H 2022 MNRAS 510 4347Google Scholar

  • 图 1  增益系数与Zernike模式时域误差的关系

    Fig. 1.  Relations between gain and Zernike modal error.

    图 2  最优模式增益快速估计流程图

    Fig. 2.  Fast estimation of optimal modal gain.

    图 3  UDSM-241结构图

    Fig. 3.  Sketch of the UDSM-241.

    图 4  夏克-哈特曼波前传感器子孔径的分布图

    Fig. 4.  Sub-aperture layout of the Shack-Hartmann wavefront sensor.

    图 5  高阶模式对应的最优增益系数和最优控制带宽(仿真)

    Fig. 5.  Optimal gain and control bandwidth of higher-order modes (simulation).

    图 6  第6, 15, 35, 65项模式的整体拟合结果

    Fig. 6.  Overall fitting results of models 6, 15, 35 and 65.

    图 7  高阶各项模式最优增益系数的拟合对比(仿真)

    Fig. 7.  Comparison of optimal gain of higher-order modes (simulation).

    图 8  Zernike模式波前像差及大气相干长度$ {r}_{0} $ = 3.3 cm

    Fig. 8.  Zernike wavefront error and atmospheric coherence length $ {r}_{0} $ = 3.3 cm.

    图 9  高阶模式对应的最优增益系数和最优控制带宽(实验)

    Fig. 9.  Optimal gain and control bandwidth of higher-order modes (experiment).

    图 10  高阶各项模式最优增益系数的拟合对比(实验)

    Fig. 10.  Comparison of optimal gain of higher-order modes (experiment).

    图 11  PSD曲线(a)和CPSD (b)曲线对比

    Fig. 11.  Comparison of PSD (a) curves and CPSD (b) curves

    图 12  误差传递函数曲线对比

    Fig. 12.  Comparison of error transfer function curves.

    图 13  高阶波前像差RMS值的比较

    Fig. 13.  Comparison of RMS values of higher-order wavefront aberration.

    表 1  不同增益系数下波前误差RMS值对比

    Table 1.  Comparison of wavefront RMS value with different gain.

    增益系数开环0.10.20.30.40.5
    波前误差 RMS/nm580.4109.8102.6105.9118.5151.6
    下载: 导出CSV
  • [1]

    姜文汉 2018 光电工程 45 7Google Scholar

    Jiang W H 2018 Opto. Electron. Eng. 45 7Google Scholar

    [2]

    饶长辉, 朱磊, 张兰强, 饶学军, 鲍华, 孔林, 郭友明, 钟立波, 马学安, 李梅, 王成, 张小军, 樊新龙, 王晓云, 凡木文, 陈东红, 冯忠毅 2018 光电工程 45 22Google Scholar

    Rao C H, Zhu L, Zhang L Q, Rao X J, Bao H, Kong L, Guo Y M, Zhong L B, Ma X A, Li M, Wang C, Zhang X J, Fan X L, Wang X Y, Fan M W, Chen D H, Feng Z Y 2018 Opto. Electron. Eng 45 22Google Scholar

    [3]

    Rao C H, Gu N T, Rao X J, et al. 2020 Sci. China-Phys. Mech. Astron. 63 109631Google Scholar

    [4]

    Luo Q, Huang L H, Gu N T, Rao C H 2012 Chin. Phys. B 21 094201Google Scholar

    [5]

    Guo Y M, Zhong L B, Min L, Wang J Y, Wu Y, Chen K L, Wei K, Rao C H 2022 Opto-Electron. Adv. 5 200082Google Scholar

    [6]

    宁禹, 余浩, 周虹, 饶长辉, 姜文汉 2009 物理学报 58 4717Google Scholar

    Ning Y, Yu H, Zhou H, Rao C H, Jiang W H 2009 Acta Phys. Sin. 58 4717Google Scholar

    [7]

    李新阳, 姜文汉, 王春红, 鲜浩 2001 光学学报 21 283Google Scholar

    Li X Y, Jiang W H, Wang C H, Xian H 2001 Acta Opt. Sin. 21 283Google Scholar

    [8]

    颜召军, 李新阳, 饶长辉 2011 光学学报 31 0101003Google Scholar

    Yan Z J, Li X Y, Rao C H 2011 Acta Opt. Sin. 31 0101003Google Scholar

    [9]

    颜召军, 李新阳, 饶长辉 2013 光学学报 33 0301002Google Scholar

    Yan Z J, Li X Y, Rao C H 2013 Acta Opt. Sin. 33 0301002Google Scholar

    [10]

    Gendron E, Léna P 1994 Astron. Astrophys. 291 337

    [11]

    Gendron E, Léna P 1995 Astron. Astrophys. Suppl. S. 111 153

    [12]

    Dessenne C, Madec P Y, Rousset G 1997 Opt. Lett. 22 1535Google Scholar

    [13]

    Dessenne C, Madec P Y, Rousset G 1998 Appl. Opt. 37 4623Google Scholar

    [14]

    Poyneer L A, Palmer D W, Macintosh B, et al. 2016 Appl. Opt. 55 323Google Scholar

    [15]

    Wang J Y, Guo Y M, Kong L, Zhang L Q, Gu N T, Chen K L, Rao C H 2020 Monthly Notices of the Royal Astronomical Society 496 5126Google Scholar

    [16]

    王佳英, 郭友明, 孔林, 陈克乐, 饶长辉 2020 激光与光电子学进展 57 230101Google Scholar

    Wang J Y, Guo Y M, Kong L, Chen K L, Rao C H 2020 Laser & Optoelectr. Pro. 57 230101Google Scholar

    [17]

    Noll R 1976 J. Opt. Soc. Am. A 66 207Google Scholar

    [18]

    高玮玮, 沈建新, 李邦明, 梁春 2010 光谱学与光谱分析 30 2232Google Scholar

    Gao W W, Shen J C, Li B M, Liang C 2010 Spectrosc. Spect. Anal. 30 2232Google Scholar

    [19]

    郭友明, 马晓燠, 饶长辉 2014 物理学报 63 069502Google Scholar

    Guo Y M, Ma X Y, Rao C H 2014 Acta Phys. Sin. 63 069502Google Scholar

    [20]

    饶长辉, 姜文汉 1996 强激光与粒子束 8 469

    Rao C H, Jiang W H 1996 High Power Laser Partic. Beams 8 469

    [21]

    李新阳, 姜文汉 2000 光学学报 20 1328Google Scholar

    Li X Y, Jiang W H 2000 Acta Opt. Sin. 20 1328Google Scholar

    [22]

    Wei K, Zhang X J, Xian H, Ma W L, Zhang A, Zhou L C, Guan C L, Li M, Chen D H, Chen S Q, Liao Z, Rao C H, Zhang Y D 2010 Chin. Opt. Lett. 8 1019Google Scholar

    [23]

    Guo Y M, Zhang A, Fan X L, Rao C H, Wei L, Xian H, Wei K, Zhang X J, Guan C L, Li M, Zhou L C, Jin K, Zhang J B, Deng J J, Zhou L F, Chen H, Zhang X J, Zhang Y D 2016 Opt. Lett. 41 5712Google Scholar

    [24]

    Guo Y M, Wu Y, Li Y, Rao X J, Rao C H 2022 MNRAS 510 4347Google Scholar

  • [1] 赵旺, 董理治, 杨平, 王帅, 许冰. 基于瀑布型多重网格加速的复指数波前复原算法. 物理学报, 2019, 68(10): 104209. doi: 10.7498/aps.68.20182137
    [2] 张艳艳, 陈苏婷, 葛俊祥, 万发雨, 梅永, 周晓彦. 自适应非凸稀疏正则化下自适应光学系统加性噪声的去除. 物理学报, 2017, 66(12): 129501. doi: 10.7498/aps.66.129501
    [3] 凡木文, 黄林海, 李梅, 饶长辉. 抑制光束抖动的压电倾斜镜高带宽控制. 物理学报, 2016, 65(2): 024209. doi: 10.7498/aps.65.024209
    [4] 汪肇坤, 杨振宇, 陶欢, 赵茗. 复合结构螺旋超材料对光波前的高效调控. 物理学报, 2016, 65(21): 217802. doi: 10.7498/aps.65.217802
    [5] 刘章文, 李正东, 周志强, 袁学文. 基于模糊控制的自适应光学校正技术. 物理学报, 2016, 65(1): 014206. doi: 10.7498/aps.65.014206
    [6] 唐艳秋, 孙强, 赵建, 姚凯男. 一种基于全息术的光学系统闭环像差补偿方法. 物理学报, 2015, 64(2): 024206. doi: 10.7498/aps.64.024206
    [7] 郭友明, 饶长辉, 鲍华, 张昂, 魏凯. 一种自适应光学系统响应矩阵的直接计算方法. 物理学报, 2014, 63(14): 149501. doi: 10.7498/aps.63.149501
    [8] 郭友明, 马晓燠, 饶长辉. 自适应光学系统倾斜校正回路的最优闭环带宽. 物理学报, 2014, 63(6): 069502. doi: 10.7498/aps.63.069502
    [9] 王宇煜, 高妍琦, 朱海东, 卢兴华, 张军勇, 郭亚晶, 惠宏超, 朱宝强. 包含波面校正的四程放大系统的准直问题研究. 物理学报, 2013, 62(5): 055201. doi: 10.7498/aps.62.055201
    [10] 简小华, 崔崤峣, 向永嘉, 韩志乐. 自适应多光谱光声成像技术研究. 物理学报, 2012, 61(21): 217801. doi: 10.7498/aps.61.217801
    [11] 刘超, 胡立发, 曹召良, 穆全全, 彭增辉, 宣丽. 快速响应的硅基纯相位液晶器件对动态大气湍流波前的校正能力研究. 物理学报, 2012, 61(8): 089501. doi: 10.7498/aps.61.089501
    [12] 刘超, 胡立发, 穆全全, 曹召良, 胡红斌, 张杏云, 芦永军, 宣丽. 用于开环液晶自适应光学系统的模式预测技术研究. 物理学报, 2012, 61(12): 129501. doi: 10.7498/aps.61.129501
    [13] 卢婧, 李昊, 何毅, 史国华, 张雨东. 超分辨率活体人眼视网膜共焦扫描成像系统. 物理学报, 2011, 60(3): 034207. doi: 10.7498/aps.60.034207
    [14] 王建新, 白福忠, 宁禹, 黄林海, 姜文汉. 无调制两面锥波前传感器的衍射理论分析和数值仿真. 物理学报, 2011, 60(2): 029501. doi: 10.7498/aps.60.029501
    [15] 张艳艳, 饶长辉, 李梅, 马晓燠. 基于电子倍增电荷耦合器件的哈特曼-夏克波前传感器质心探测误差分析. 物理学报, 2010, 59(8): 5904-5913. doi: 10.7498/aps.59.5904
    [16] 白福忠, 饶长辉. 针孔直径对自参考干涉波前传感器测量精度的影响. 物理学报, 2010, 59(6): 4056-4064. doi: 10.7498/aps.59.4056
    [17] 白福忠, 饶长辉. 自参考干涉波前传感器中针孔直径对闭环自适应光学系统校正精度的影响. 物理学报, 2010, 59(11): 8280-8286. doi: 10.7498/aps.59.8280
    [18] 宁禹, 余浩, 周虹, 饶长辉, 姜文汉. 20单元双压电片变形镜的性能测试与闭环校正实验研究. 物理学报, 2009, 58(7): 4717-4723. doi: 10.7498/aps.58.4717
    [19] 蔡冬梅, 凌 宁, 姜文汉. 纯相位液晶空间光调制器拟合泽尼克像差性能分析. 物理学报, 2008, 57(2): 897-903. doi: 10.7498/aps.57.897
    [20] 李超宏, 鲜 浩, 姜文汉, 饶长辉. 用于白天自适应光学的波前探测方法分析. 物理学报, 2007, 56(7): 4289-4296. doi: 10.7498/aps.56.4289
计量
  • 文章访问数:  3119
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-28
  • 修回日期:  2023-05-11
  • 上网日期:  2023-05-12
  • 刊出日期:  2023-07-05

/

返回文章
返回