搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于1/4波片的腔增强自发参量下转换过程中双折射效应的补偿

贺海 杨鹏飞 张鹏飞 李刚 张天才

引用本文:
Citation:

基于1/4波片的腔增强自发参量下转换过程中双折射效应的补偿

贺海, 杨鹏飞, 张鹏飞, 李刚, 张天才

Birefringence compensation utilizing quarter-wave plates in cavity-enhanced spontaneous parametric down-conversion process

He Hai, Yang Peng-Fei, Zhang Peng-Fei, Li Gang, Zhang Tian-Cai
PDF
HTML
导出引用
  • 腔增强的光学自发参量下转换是量子光学中产生量子光场的基本方法之一, 然而下转换过程往往受到非线性晶体的双折射效应的影响. 特别是在利用II类准相位匹配非线性晶体产生双光子对的过程中, 晶体的双折射效应使得信号光和闲置光不能同时起振. 本文提出并验证了一种利用1/4波片补偿信号光和闲置光的光程的方法, 在保证较小内腔损耗及良好的调节自由度的情况下, 以相对简洁的装置实现信号光和闲置光的双共振.
    Single-photon source is an essential element in quantum information processing, and extensively used in the proof-in-principle demonstration in quantum physics, quantum imaging, quantum cryptography, etc. Considering the operating temperature and system complexity, it is a favorable option to choose spontaneous parametric down-conversion (SPDC) combined with the enhancement effect of a cavity. When generating significant single-photon source via the cavity-enhanced type-II spontaneous parametric down-conversion method, there appears inevitable birefringence effect which obviously influences the resonance condition. In order to compensate for birefringence effect, different approaches have been used such as introducing compensating crystal, placing a half-wave plate, tuning the temperature of the nonlinear crystal, customized conjoined double-cavity structure, and cluster effect. In this work, two quarter-wave plates, with an angle of 45° between the optical axis and the crystal axis, are placed in the cavity to ensure the double resonance of signal photon and idler photon. In the process, the signal photon and idler photon generated simultaneously have different polarizations perpendicular to each other through the type-II nonlinear crystal. Considering horizontally polarized photon, its polarization is changed into left circular polarization by the first quarter-wave plate and then returns as vertical polarization. After traversing a long optical path, it shifts to right circular polarization through the second quarter-wave plate. When the photon passes through the same quarter-wave plate again, the polarization state is originally converted into horizontal polarization state. Then the photon completes a round-trip. The other photon with vertical polarization experiences the same process. As a result, the signal photon and idler photon travel identical optical path. The general explanation is described by the Jones matrices, with the emphasis on the transformation of the polarizations of photons. This method can effectively compensate for birefringence effect, achieving double resonance by using a relatively simple device under the condition of smaller intra-cavity loss and more flexible for adjustment. The signal (idler) photon has a sub-natural linewidth of $1.01( 1.08 )\;{\rm{MHz}} $, demonstrating the feasibility of the proposed technique. This introduced compensating method paves the way to the realization of single-photon quantum source applied to the research of single-photon-single-atom quantum information processing, quantum interface and quantum network node with a single cesium atom confined in the strongly coupled cavity quantum electrodynamics system.
      通信作者: 李刚, gangli@sxu.edu.cn ; 张天才, tczhang@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974223, 11974225)和山西省“1331 工程”重点学科建设基金资助的课题.
      Corresponding author: Li Gang, gangli@sxu.edu.cn ; Zhang Tian-Cai, tczhang@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974223, 11974225) and the Fund for Shanxi 1331 Project Key Subjects Construction, China.
    [1]

    Perumangatt C, Lohrmann A, Ling A 2020 Phys. Rev. A 102 012404Google Scholar

    [2]

    Tang J S, Tang L, Wu H D, Wu Y, Sun H, Zhang H, Li T, Lu Y Q, Xiao M, Xia K Y 2021 Phys. Rev. Appl. 15 064020Google Scholar

    [3]

    杨宏恩, 韦联福 2019 物理学报 68 234202Google Scholar

    Yang H E, Wei L F 2019 Acta Phys. Sin. 68 234202Google Scholar

    [4]

    Wang B X, Tao M J, Ai Q, Xin T, Lambert N, Ruan D, Cheng Y C, Nori F, Deng F G, and Long G L 2018 NPJ Quantum Inf. 4 52Google Scholar

    [5]

    Yang B, Sun H, Ott R, Wang H Y, Zache T V, Halimeh J C, Yuan Z S, Hauke P, Pan J W 2020 Nature 587 392Google Scholar

    [6]

    Piro N, Rohde F, Schuck C, Almendros M, Huwer J, Ghosh J, Haase A, Hennrich M, Dubin F, and Eschner J 2011 Nat. Phys. 7 17Google Scholar

    [7]

    Pittman T P, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 3429Google Scholar

    [8]

    Zhang H, Jin X M, Yang J, Dai H N, Yang S J, Zhao T M, Rui J, He Y, Jiang X, Yang F, Pan G S, Yuan Z S, Deng Y J, Chen Z B, Bao X H, Chen S, Zhao B, Pan J W 2011 Nat. Photonics 5 628Google Scholar

    [9]

    Yin J, Cao Y, Li Y H, Liao S K, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S, Dai H, Li G B, Lu Q M, Gong Y H, Xu Y, Li S L, Li F Z, Yin Y Y, Jiang Z Q, Li M, Jia J J, Ren G, He D, Zhou Y L, Zhang X X, Wang N, Chang X, Zhu Z C, Liu N L, Chen Y A, Lu C Y, Shu R, Peng C Z, Wang J Y, Pan J W 2017 Science 356 1140Google Scholar

    [10]

    Broome M A, Fedrizzi A, Lanyon B P, Kassal I, Guzik A A, White A G 2010 Phys. Rev. Lett. 104 153602Google Scholar

    [11]

    Esposito C, Barros M R, Hernandez A D, Carvacho G, Colandrea F D, Barboza R, Cardano F, Spagnolo N, Marrucci L, Sciarrino F 2022 NPJ Quantum Inf. 8 34Google Scholar

    [12]

    Scholz M, Koch L, Benson O 2009 Phys. Rev. Lett. 102 063603Google Scholar

    [13]

    Zhou Z Y, Ding D S, Li Y, Wang F Y, Shi B S 2014 J. Opt. Soc. Am. B 31 128Google Scholar

    [14]

    Rambach M, Nikolova A, Weinhold T J, White A G 2016 APL Photonics 1 096101Google Scholar

    [15]

    Niizeki K, Ikeda K, Zheng M Y, Xie X P, Okamura K, Takei N, Namekata N, Inoue S, Kosaka H, Horikiri T 2018 Appl. Phys. Express 11 042801Google Scholar

    [16]

    Liu J J, Liu J C, Yu P, Zhan G Q 2020 APL Photonics 5 066105Google Scholar

    [17]

    Moqanaki A, Maaas F, Walther P 2019 APL Photonics 4 090804Google Scholar

    [18]

    Tsai P J, Chen Y C 2018 Quantum Sci. Technol. 3 034005Google Scholar

    [19]

    Ou Z Y, Lu Y J 1999 Phys. Rev. Lett. 83 2556Google Scholar

    [20]

    Tian L, Li S J, Yuan H X, Wang H 2016 J. Phys. Soc. Japan 85 124403Google Scholar

    [21]

    Wang J, Huang Y F, Zhang C, Cui J M, Zhou Z Y, Liu B H, Zhou Z Q, Tang J S, Li C F, Guo G C 2018 Phys. Rev. Appl. 10 054036Google Scholar

    [22]

    Chuu C S, Yin G Y, Harris S E 2012 Appl. Phys. Lett. 101 051108Google Scholar

    [23]

    吕百达 2003 激光光学(第三版) (北京: 高等教育出版社) 第422—426页

    Lv B D 2003 Laser Optics (3rd Ed.) (Beijing: Higher Education Press) pp422–426 (in Chinese)

    [24]

    Bhandari R 2008 Opt. Lett. 33 854Google Scholar

    [25]

    Hansch T W, Couilland B 1980 Opt. Commun. 35 441Google Scholar

    [26]

    刘鑫鑫 2013 硕士学位论文 (太原: 山西大学)

    Liu X X 2013 M. S. Thesis (Taiyuan: Shanxi University) (in Chinese)

    [27]

    Scholz M, Koch L, Benson O 2009 Opt. Commun. 282 3518Google Scholar

    [28]

    李岩 2016 博士学位论文 (合肥: 中国科学技术大学)

    Li Y 2016 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [29]

    Bocquillon E, Couteau C, Razavi M, Laflamme R, Weihs G 2009 Phys. Rev. A 79 035801Google Scholar

    [30]

    Wahl M, Rohlicke T, Rahn J H, Erdmann R, Kell G, Ahlrichs A, Kernbach M, Schell A W, Benson O 2013 Rev. Sci. Instrum. 84 043102Google Scholar

  • 图 1  置有QWPs的SPDC腔中光子的偏振变化(PZT, 压电陶瓷) (a) SPDC产生的水平偏振光子(红虚线箭头)的情况; (b) 竖直偏振光子(黑虚线箭头)的情况. 其中, 蓝实线箭头和红实线箭头分别表示波长为426 nm和852 nm的激光, R和L分别表示右旋圆偏振光和左旋圆偏振光, k, s, p分别表示光波矢(z轴)、光场垂直分量(y轴)和平行分量(x轴)

    Fig. 1.  Polarization transformations of photons in SPDC cavity with QWPs. Photon with an initial polarization of H (red dashed arrow) in (a) or V (black dashed arrow) in (b) generated from SPDC. Blue and red solid arrows stand for 426 nm and 852 nm laser respectively, R (L) shows right (left) circular polarization, k is wave vector (z axis), s is perpendicular part (y axis) and p represents parallel part (x axis). PZT represents piezoelectric transducer.

    图 2  2个QWPs不同角度下的本征值. ${\alpha _2} = {45^ \circ }$并改变QWP1时本征值的振幅(a)和相位(b); ${\alpha _1} = {45^ \circ }$并改变QWP2时本征值的振幅(c)和相位(d); ${\alpha _2} = 0.23{\text{π }}$并改变QWP1时本征值的振幅(e)和相位(f). 其中红线和蓝线对应了2个不同的本征值

    Fig. 2.  Eigenvalues with different degrees of two QWPs. Amplitude in (a) of eigenvalues and phase in (b) of the eigenvalues on the condition of ${\alpha _2} = {45^ \circ }$ and different degrees of QWP1; amplitude in (c) and the phase in (d) with ${\alpha _1} = {45^ \circ }$ and different degrees of QWP2; amplitude in (e) and the phase in (f) with ${\alpha _2} = 0.23{\text{π }}$ and different degrees of QWP1. Red line is about one of eigenvalues, while the blue line is about the other.

    图 3  使用QWP补偿双折射效应的装置图. 852 nm的激光(红色)通过倍频腔(Doubler)产生腔增强的SPDC所需的426 nm (蓝色)的泵浦光. SPDC腔腔长由波长远离光子对的840 nm的辅助光(紫色)进行锁定. SPDC产生的偏振相互垂直的光子对耦合进光纤进行后续实验

    Fig. 3.  Experimental apparatus about birefringence compensating utilizing two QWPs. Laser with the wavelength of 852 nm in red color is sent into the doubler cavity. Generated frequency-doubling light at 426 nm (in blue color) is filtered and coupled to the SPDC cavity after lens-transforming. Length of SPDC cavity is stabilized by the 840 nm auxiliary light. Signal and idler photons generated from SPDC cavity filtered by cascaded etalons are split on a PBS and coupled to multi-fibers for further processing. Doubler, second-harmonic generation cavity.

    图 4  保持QWP2的角度约$ {45^ \circ } $, QWP1不同角度(重合程度)下的互关联函数 (a) $ {\alpha _0} + 80' $(72.8%); (b) $ {\alpha _0} $ (42.1%); (c) $ {\alpha _0} - 80' $ (25.0%); (d) $ {\alpha _0} - 160' $ (14.6%). 插图为相应腔内2个本征值所对应纵模的透射峰

    Fig. 4.  Cross-correlation function with different degrees of QWP1 (overlap) on the condition of the degree of QWP2 approximately equal to $ {45^ \circ } $: (a) $ {\alpha _0} + 80' $ (72.8%); (b) $ {\alpha _0} $(42.1%); (c) $ {\alpha _0} - 80' $ (25.0%); (d) $ {\alpha _0} - 160' $ (14.6%). Insets are corresponding transmission spectra for the two different orthogonal modes.

    图 5  QWP1的角度固定为相对较好的$ {\alpha _0} + 80' $时QWP2在不同角度(重合程度)下的互关联函数 (a) $ {\beta _0} - 40' $ (60.9%); (b) $ {\beta _0} + 40' $ (90.0%); (c) $ {\beta _0} + 80' $ (35.2%); (d) $ {\beta _0} + 120' $ (23.8%)

    Fig. 5.  Cross-correlation function with different degrees of QWP2 (overlap) on the condition of QWP1 equal to $ {\alpha _{\text{0}}}{\text{ + 80'}} $: (a) $ {\beta _0} - 40' $ (60.9%); (b) $ {\beta _0} + 40' $ (90.0%); (c) $ {\beta _0} + 80' $ (35.2%); (d) $ {\beta _0} + 120' $ (23.8%).

    图 6  不同时间分辨率条件下的互关联函数 (a) 100 ps; (b) 4.4 ns, 蓝色曲线(数据点)和红色曲线(数据点)分别表示信号光和闲置光的拟合曲线(数据)

    Fig. 6.  Cross-correlation function with different resolution time: (a) 100 ps; (b) 4.4 ns. The blue curve (points) and red curve (points) are representative fitting curves (experimental data) of signal and idler photons respectively.

  • [1]

    Perumangatt C, Lohrmann A, Ling A 2020 Phys. Rev. A 102 012404Google Scholar

    [2]

    Tang J S, Tang L, Wu H D, Wu Y, Sun H, Zhang H, Li T, Lu Y Q, Xiao M, Xia K Y 2021 Phys. Rev. Appl. 15 064020Google Scholar

    [3]

    杨宏恩, 韦联福 2019 物理学报 68 234202Google Scholar

    Yang H E, Wei L F 2019 Acta Phys. Sin. 68 234202Google Scholar

    [4]

    Wang B X, Tao M J, Ai Q, Xin T, Lambert N, Ruan D, Cheng Y C, Nori F, Deng F G, and Long G L 2018 NPJ Quantum Inf. 4 52Google Scholar

    [5]

    Yang B, Sun H, Ott R, Wang H Y, Zache T V, Halimeh J C, Yuan Z S, Hauke P, Pan J W 2020 Nature 587 392Google Scholar

    [6]

    Piro N, Rohde F, Schuck C, Almendros M, Huwer J, Ghosh J, Haase A, Hennrich M, Dubin F, and Eschner J 2011 Nat. Phys. 7 17Google Scholar

    [7]

    Pittman T P, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 3429Google Scholar

    [8]

    Zhang H, Jin X M, Yang J, Dai H N, Yang S J, Zhao T M, Rui J, He Y, Jiang X, Yang F, Pan G S, Yuan Z S, Deng Y J, Chen Z B, Bao X H, Chen S, Zhao B, Pan J W 2011 Nat. Photonics 5 628Google Scholar

    [9]

    Yin J, Cao Y, Li Y H, Liao S K, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S, Dai H, Li G B, Lu Q M, Gong Y H, Xu Y, Li S L, Li F Z, Yin Y Y, Jiang Z Q, Li M, Jia J J, Ren G, He D, Zhou Y L, Zhang X X, Wang N, Chang X, Zhu Z C, Liu N L, Chen Y A, Lu C Y, Shu R, Peng C Z, Wang J Y, Pan J W 2017 Science 356 1140Google Scholar

    [10]

    Broome M A, Fedrizzi A, Lanyon B P, Kassal I, Guzik A A, White A G 2010 Phys. Rev. Lett. 104 153602Google Scholar

    [11]

    Esposito C, Barros M R, Hernandez A D, Carvacho G, Colandrea F D, Barboza R, Cardano F, Spagnolo N, Marrucci L, Sciarrino F 2022 NPJ Quantum Inf. 8 34Google Scholar

    [12]

    Scholz M, Koch L, Benson O 2009 Phys. Rev. Lett. 102 063603Google Scholar

    [13]

    Zhou Z Y, Ding D S, Li Y, Wang F Y, Shi B S 2014 J. Opt. Soc. Am. B 31 128Google Scholar

    [14]

    Rambach M, Nikolova A, Weinhold T J, White A G 2016 APL Photonics 1 096101Google Scholar

    [15]

    Niizeki K, Ikeda K, Zheng M Y, Xie X P, Okamura K, Takei N, Namekata N, Inoue S, Kosaka H, Horikiri T 2018 Appl. Phys. Express 11 042801Google Scholar

    [16]

    Liu J J, Liu J C, Yu P, Zhan G Q 2020 APL Photonics 5 066105Google Scholar

    [17]

    Moqanaki A, Maaas F, Walther P 2019 APL Photonics 4 090804Google Scholar

    [18]

    Tsai P J, Chen Y C 2018 Quantum Sci. Technol. 3 034005Google Scholar

    [19]

    Ou Z Y, Lu Y J 1999 Phys. Rev. Lett. 83 2556Google Scholar

    [20]

    Tian L, Li S J, Yuan H X, Wang H 2016 J. Phys. Soc. Japan 85 124403Google Scholar

    [21]

    Wang J, Huang Y F, Zhang C, Cui J M, Zhou Z Y, Liu B H, Zhou Z Q, Tang J S, Li C F, Guo G C 2018 Phys. Rev. Appl. 10 054036Google Scholar

    [22]

    Chuu C S, Yin G Y, Harris S E 2012 Appl. Phys. Lett. 101 051108Google Scholar

    [23]

    吕百达 2003 激光光学(第三版) (北京: 高等教育出版社) 第422—426页

    Lv B D 2003 Laser Optics (3rd Ed.) (Beijing: Higher Education Press) pp422–426 (in Chinese)

    [24]

    Bhandari R 2008 Opt. Lett. 33 854Google Scholar

    [25]

    Hansch T W, Couilland B 1980 Opt. Commun. 35 441Google Scholar

    [26]

    刘鑫鑫 2013 硕士学位论文 (太原: 山西大学)

    Liu X X 2013 M. S. Thesis (Taiyuan: Shanxi University) (in Chinese)

    [27]

    Scholz M, Koch L, Benson O 2009 Opt. Commun. 282 3518Google Scholar

    [28]

    李岩 2016 博士学位论文 (合肥: 中国科学技术大学)

    Li Y 2016 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [29]

    Bocquillon E, Couteau C, Razavi M, Laflamme R, Weihs G 2009 Phys. Rev. A 79 035801Google Scholar

    [30]

    Wahl M, Rohlicke T, Rahn J H, Erdmann R, Kell G, Ahlrichs A, Kernbach M, Schell A W, Benson O 2013 Rev. Sci. Instrum. 84 043102Google Scholar

  • [1] 刘建鑫, 赵刚, 周月婷, 周晓彬, 马维光. 高反射腔镜双折射效应对腔增强光谱技术的影响. 物理学报, 2022, 71(8): 084202. doi: 10.7498/aps.71.20212090
    [2] 曲良辉, 都琳, 曹子露, 胡海威, 邓子辰. 化学自突触的电导扰动诱导相干或随机双共振现象. 物理学报, 2020, 69(23): 230501. doi: 10.7498/aps.69.20200856
    [3] 何英秋, 丁东, 彭涛, 闫凤利, 高亭. 基于自发参量下转换源二阶激发过程产生四光子超纠缠态. 物理学报, 2018, 67(6): 060302. doi: 10.7498/aps.67.20172230
    [4] 刘岩, 李健军, 高冬阳, 翟文超, 胡友勃, 郭园园, 夏茂鹏, 郑小兵. I类自发参量下转换相关光子圆环的时间相关特性研究. 物理学报, 2016, 65(19): 194211. doi: 10.7498/aps.65.194211
    [5] 谭巍, 邱晓东, 赵刚, 侯佳佳, 贾梦源, 闫晓娟, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 高效频率转换下双波长外腔共振和频技术研究. 物理学报, 2016, 65(7): 074202. doi: 10.7498/aps.65.074202
    [6] 厉巧巧, 张昕, 吴江滨, 鲁妍, 谭平恒, 冯志红, 李佳, 蔚翠, 刘庆斌. 双层石墨烯位于18002150 cm-1频率范围内的和频拉曼模. 物理学报, 2014, 63(14): 147802. doi: 10.7498/aps.63.147802
    [7] 马海强, 李泉跃, 汪龙, 韦克金, 张勇, 焦荣珍. 一种高速率、高精度的全光纤偏振控制方法. 物理学报, 2013, 62(8): 084217. doi: 10.7498/aps.62.084217
    [8] 许强, 苗润才, 张亚妮. 六角点阵蜂窝状包层光子晶体光纤中的高双折射负色散效应. 物理学报, 2012, 61(23): 234210. doi: 10.7498/aps.61.234210
    [9] 王伟, 杨博, 宋鸿儒, 范岳. 八边形高双折射双零色散点光子晶体光纤特性分析. 物理学报, 2012, 61(14): 144601. doi: 10.7498/aps.61.144601
    [10] 贾维国, 乔丽荣, 王旭颖, 杨军, 张俊萍, 门克内木乐. 双折射光纤中拉曼效应对参量放大增益谱的影响. 物理学报, 2012, 61(9): 094215. doi: 10.7498/aps.61.094215
    [11] 张磊, 李曙光, 姚艳艳, 付博, 张美艳, 郑义. 高双折射纳米结构光子晶体光纤特性研究. 物理学报, 2010, 59(2): 1101-1107. doi: 10.7498/aps.59.1101
    [12] 张亚妮. 新型矩形点阵光子晶体光纤的高双折射负色散效应. 物理学报, 2010, 59(12): 8632-8639. doi: 10.7498/aps.59.8632
    [13] 张亚妮. 压缩六角点阵椭圆孔光子晶体光纤的低色散高双折射效应. 物理学报, 2010, 59(6): 4050-4055. doi: 10.7498/aps.59.4050
    [14] 付博, 李曙光, 姚艳艳, 张磊, 张美艳, 刘司英. 双芯高双折射光子晶体光纤耦合特性研究. 物理学报, 2009, 58(11): 7708-7715. doi: 10.7498/aps.58.7708
    [15] 崔前进, 徐一汀, 宗楠, 鲁远甫, 程贤坤, 彭钦军, 薄勇, 崔大复, 许祖彦. 高功率腔内双共振2μm光参量振荡器特性研究. 物理学报, 2009, 58(3): 1715-1718. doi: 10.7498/aps.58.1715
    [16] 林 敏, 方利民, 朱若谷. 双频信号作用下耦合双稳系统的双共振特性. 物理学报, 2008, 57(5): 2638-2642. doi: 10.7498/aps.57.2638
    [17] 李海鹏, 韩 奎, 逯振平, 沈晓鹏, 黄志敏, 张文涛, 白 磊. 有机分子第一超极化率色散效应和双光子共振增强理论研究. 物理学报, 2006, 55(4): 1827-1831. doi: 10.7498/aps.55.1827
    [18] 胡明列, 王清月, 栗岩峰, 倪晓昌, 张志刚, 王 专, 柴 路, 侯蓝田, 李曙光, 周桂耀. 非均匀微结构光纤中双折射现象的研究. 物理学报, 2004, 53(12): 4248-4252. doi: 10.7498/aps.53.4248
    [19] 孙利群, 张彦鹏, 刘亚芳, 唐天同, 杨照金, 向世明. 自发参量下转换双光子场绝对校准光电探测器的方法研究. 物理学报, 2000, 49(4): 724-729. doi: 10.7498/aps.49.724
    [20] 吴存恺, 范俊颖. 在钕玻璃中双光子共振吸收引起的非线性折射率. 物理学报, 1979, 28(5): 150-152. doi: 10.7498/aps.28.150
计量
  • 文章访问数:  3031
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-20
  • 修回日期:  2023-04-17
  • 上网日期:  2023-04-21
  • 刊出日期:  2023-06-20

/

返回文章
返回