搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

H离子团簇高次谐波平台展宽与团簇膨胀

张春艳

引用本文:
Citation:

H离子团簇高次谐波平台展宽与团簇膨胀

张春艳

High-order harmonic platform extension and cluster expansion of H ion cluster

Zhang Chun-Yan
PDF
HTML
导出引用
  • 通过数值求解强激光场与二维模型H离子团簇相互作用的含时薛定谔方程, 发现H离子团簇产生的高次谐波平台比单个H原子产生的高次谐波平台要宽. 建立了研究团簇产生高次谐波的经典模型, 研究发现经典模型计算结果与含时薛定谔方程结果能很好的对应, 同时指出高次谐波平台拓展的原因在于母核周围其他离子产生的库仑势场的作用, 并给出由此产生的离子间距改变对高次谐波截止能量的影响, 为观测团簇膨胀提供了一种可能途径.
    By solving the time-dependent Schrödinger equation for the interaction of the intense laser field with the two-dimensional model of H ion cluster, it is found that the high-order harmonic plateau produced by H ion cluster is wider than that generated by a single H atom. The interaction between intense laser field and cluster is decomposed into three processes: internal ionization, classical motion under the action of external field and Coulomb field of the cluster ions, and recombination. After internal ionization, the particle is deemed classical and its motion follows Newton’s equation of motion. By studying the classical trajectory of electron and the variation of kinetic and potential energy with time, it is observed that during the electron’s returning, the additional kinetic energy is required as a result of the reduction in potential energy. Furthermore, the correlation between return energy and return time obtained from the classical model is in good agreement with that obtained from time-dependent Schrödinger equation. In this study, the cutoff energy of high-order harmonic generated by clusters is compared with that of a single atom, indicating that the extension of the platform of high-order harmonic by clusters is primarily caused by the Coulomb effect of other ions surrounding the parent nucleus. Additionally, the influence of ion spacing on the cutoff energy of high-order harmonic is also investigated, and a possible relationship between the cut-off energy of high harmonic and the cluster expansion is established.
      通信作者: 张春艳, 2012004@hbmzu.edu.cn
      Corresponding author: Zhang Chun-Yan, 2012004@hbmzu.edu.cn
    [1]

    Itatani J, Levesque J, Zeidler D, Niikura H, Pépin H, Kieffer J C, Corkum P B, Villeneuve D M 2004 Nature 432 867Google Scholar

    [2]

    祝晓松, 张庆斌, 兰鹏飞, 陆培祥 2016 物理学报 65 224207Google Scholar

    Zhu X S, Zhang Q B, Lan P F, Lu P X 2016 Acta Phys. Sin. 65 224207Google Scholar

    [3]

    Yu S J, Li W Y, Li Y P, Chen Y J 2017 Phys. Rev. A 96 013432Google Scholar

    [4]

    Su N, Yu S J, Li W Y, Yang S P, Chen Y J 2018 Chin. Phys. B 27 054213Google Scholar

    [5]

    Qiao Y, Huo Y Q, Liang H Q, Chen J G, Liu, W J, Yang Y J, Jiang S C 2022 Opt. Express 30 9971Google Scholar

    [6]

    Qiao Y, Huo Y Q, Jiang S C, Yang Y J, Chen J G 2023 Phys. Rev. B 107 075201Google Scholar

    [7]

    陶琛玉, 雷建廷, 余璇, 骆炎, 马新文, 张少锋 2023 物理学报 72 053202Google Scholar

    Tao C Y, Lei J T, Yu X, Luo Y, Ma X W, Zhang S F 2023 Acta Phys. Sin. 72 053202Google Scholar

    [8]

    Papadogiannis N A, Witzel B, Kalpouzos C, Charalambidis D 1999 Phys. Rev. Lett. 83 4289Google Scholar

    [9]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509Google Scholar

    [10]

    Goulielmakis E, Uiberacker M, Kienberger R, Baltuska A, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Drescher M, Krausz F 2004 Science 305 1267Google Scholar

    [11]

    Sandberg R L, Paul A, Raymondson D A, Haedrich S, Gaudiosi D M, Holtsnider J, Tobey R I, Cohen O, Murnane M M, Kapteyn H C, Song C, Miao J, Liu Y, Salmassi F 2007 Phys. Rev. Lett. 99 098103Google Scholar

    [12]

    Iii C D, Rundquist A R, Murnane M M, Kapteyn H C 1998 Science 280 1412Google Scholar

    [13]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [14]

    Yang Y J, Chen G, Chen J G, Zhu Q R 2004 Chin. Phys. Lett. 21 652Google Scholar

    [15]

    Yang Y J, Chen J G, Chi F P, Zhu Q R, Zhang H X, Sun J Z 2007 Chin. Phys. Lett. 24 1537Google Scholar

    [16]

    成春芝, 周效信, 李鹏程 2011 物理学报 60 202Google Scholar

    Cheng C Z, Zhou X X, Li P C 2011 Acta Phys. Sin. 60 202Google Scholar

    [17]

    Artemyev A N, Cederbaum L S , Demekhin P V 2017 Phys. Rev. A 95 033402

    [18]

    刘艳, 郭福明, 杨玉军 2019 物理学报 68 173202Google Scholar

    Liu Y, Guo F M, Yang Y J 2019 Acta Phys. Sin. 68 173202Google Scholar

    [19]

    Zhou X, Lock R, Wagner N, Li W, Kapteyn H C, Murnane M M 2009 Phys. Rev. Lett. 102 073902Google Scholar

    [20]

    于术娟, 刘竹琴, 李雁鹏 2023 物理学报 72 043101Google Scholar

    Yu S J, Liu Z Q, Li Y P 2023 Acta Phys. Sin. 72 043101Google Scholar

    [21]

    Ghimire S, Ndabashimiye G, DiChiara A D, Sistrunk E, Stockman M I, Agostini P, DiMauro L F, Reis D A 2014 J. Phys. B: At. Mol. Opt. Phys. 47 204030Google Scholar

    [22]

    Vampa G, McDonald C R, Orlando G, Corkum P B, Brabec T 2015 Phys. Rev. B 91 064302Google Scholar

    [23]

    Kruchinin S Yu, Krausz F, Yakovlev V S 2018 Rev. Mod. Phys. 90 021002Google Scholar

    [24]

    Li L, Zhang Y F, Lan P F, Huang T F, Zhu X S, Zhai C Y, Yang K, He L X, Zhang Q B, Cao W, Lu P X 2021 Phys. Rev. Lett. 126 187401Google Scholar

    [25]

    Qiao Y, Chen J Q, Huo Y Q, Liang H Q, Yu R X, Chen J G, Liu W J, Jiang S C, Yang Y J 2023 Phys. Rev. A 107 023523Google Scholar

    [26]

    Véniard V, Taïeb R, Maquet A 1999 Phys. Rev. A 60 3952Google Scholar

    [27]

    Vozzi C, Nisoli M, Caumes J P, Sansone G, Stagira S, Silvestri S D 2005 Appl. Phys. Lett. 86 111121Google Scholar

    [28]

    Hu S X, Xu Z Z 1997 Appl. Phys. Lett. 71 2605Google Scholar

    [29]

    Tisch J W G , Ditmire T, Fraser D J, Hay N, Mason M B , Springate E, Marangos J P, Hutchinson M H R 1997 J. Phys. B: At. Mol. Opt. Phys. 30 L709Google Scholar

    [30]

    Aladi M, Márton I, Rácz P, Dombi P, Földes I B 2014 High Power Laser Sci. Eng. 2 E32Google Scholar

    [31]

    Donnelly T D, Ditmire T, Neumann K, Perry M D, Falcone R W 1996 Phys. Rev. Lett. 76 2472Google Scholar

    [32]

    Feng L, Liu H 2015 Phys. Plasmas 22 013107Google Scholar

    [33]

    Numico R, Giulietti D, Giulietti A, Gizzi L A, Roso L 2000 J. Phys. B: At. Mol. Opt. Phys. 33 2605Google Scholar

    [34]

    Vázquez de Aldana J R, Roso L 2001 J. Opt. Soc. Am. B 18 325Google Scholar

    [35]

    Park H, Wang Z, Xiong H, Schoun S B, Xu J, Agostini P, DiMauro L F 2014 Phys. Rev. Lett. 113 263401Google Scholar

    [36]

    Tao Y, Hagmeijer R, Bastiaens H M J, Goh S J, van der Slot P J M, Biedron S G, Milton S V, Boller K J 2017 New J. Phys. 19 083017Google Scholar

    [37]

    Ruf H, Handschin C, Cireasa R, Thiré N, Ferré A, Petit S, Descamps D, Mével E, Constant E, Blanchet V, Fabre B, Mairesse Y 2013 Phys. Rev. Lett. 110 083902Google Scholar

    [38]

    Moreno P, Plaja L, Roso L 1994 Europhys. Lett. 28 629Google Scholar

    [39]

    Zaretsky D F, Korneev P, Becker W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 105402Google Scholar

    [40]

    Bodi B, Aladi M, Racz P, Foldes I B, Dombi P 2019 Opt. Express 27 26721Google Scholar

    [41]

    Véniard V, Taïeb R, Maquet A 2001 Phys. Rev. A 65 013202Google Scholar

    [42]

    Li N N, Zhai Z, Liu X S 2008 Chin. Phys. Lett. 25 2508Google Scholar

    [43]

    Strelkov V, Saalmann U, Becker A, Rost J M 2011 Phys. Rev. Lett. 107 113901Google Scholar

    [44]

    Feit M D, Jr Fleck J A, Steiger A 1982 J. Comput. Phys. 47 412Google Scholar

    [45]

    Saalmann U, Rost J M 2008 Phys. Rev. Lett. 100 133006Google Scholar

  • 图 1  二维模型团簇结构示意图 (a) H8+结构示意图; (b) H24+结构示意图

    Fig. 1.  Schematic diagram of cluster structure of two-dimensional model: (a) Structure diagram of H8+; (b) structure diagram of H24+.

    图 2  团簇的势能曲面 (a) H8+势能曲面; (b) H24+势能曲面.

    Fig. 2.  Potential energy surface of cluster: (a) The potential energy surface of H8+; (b) the potential energy surface of H24+.

    图 3  强激光场与H原子和H团簇相互作用产生的高次谐波(谐波阶表示谐波发射频率$ \omega $与激光基频$ {\omega _0} $的比值) (a) I = 3×1014 W/cm2, λ = 1200 nm; (b) I = 5×1014 W/cm2, λ = 1400 nm

    Fig. 3.  High order harmonic generated from the interaction between intense laser field and H atom/H cluster: (a) I = 3×1014 W/cm2 , λ = 1200 nm; (b) I = 5×1014 W/cm2, λ = 1400 nm.

    图 4  (a), (c), (e) I = 3×1014 W/cm2 , λ = 1200 nm的线偏振激光与H8+团簇相互作用时的电子动力学行为; (b), (d), (f) I = 5×1014 W/cm2, λ = 1400 nm的线偏振激光与H24+团簇相互作用时的电子动力学行为. (a), (b) 电子返回时间与返回能量的关系, 其中黑色实线表示动能、红色划线表示总能量、蓝色点线表示相应参数激光场与H原子相互作用时电子的返回动能与返回时间的关系; (c), (d) 电子的动能、势能及总能量随时间的变化, 其中黑色实线表示动能、红色划线表示势能、蓝色点线表示总能量; (e), (f)电子在X轴方向上位移随时间的变化

    Fig. 4.  Electron dynamic behavior of linearly polarized laser interacting with cluster: (a), (c), (e) For H8+ cluster illuminated by the laser with I = 3×1014 W/cm2 , λ = 1200 nm; (b), (d), (f) for H24+ cluster illuminated by the laser with I = 5×1014 W/cm2, λ = 1400 nm. (a), (b) The relation between the return time and the return energy of the electron, where the black solid line represents the kinetic energy, the red dash line represents the total energy, and the blue dot line represents the kinetic energy from H atom; (c), (d) the energy change over time, where the black solid line represents kinetic energy, the red dash line represents potential energy, and the blue dot line represents total energy; (e), (f) displacement variations with time along X direction.

    图 5  图4(d)图4(f)的部分放大图

    Fig. 5.  Partial enlargement of Fig. 4(d)and Fig. 4(f).

    图 6  I = 3×1014 W/cm2, λ = 1200 nm的线偏振激光与H8+团簇相互作用过程中考虑(CCA)和不考虑库仑势(NCCA)影响的情况下电子的动力学行为 (a)电子返回时间与返回动能的关系; (b) 电子的动能随时间变化情况; (c)电子在X轴方向上位移随时间的变化

    Fig. 6.  Dynamical behavior of the electron with and without the influence of the Coulomb potential for H8+ cluster illuminated by the laser with I = 3×1014 W/cm2, λ = 1200 nm: (a) The relationship between electron return time and return kinetic energy; (b) the variation of the kinetic energy of electrons over time; (c) the displacement of electrons in the X-axis direction over time.

    图 7  通过TDSE计算得到的高次谐波时频分布图(图中黑色实线表示考虑库仑作用时通过经典计算得到的返回动能与单个原子的电离能之和与返回时间的关系, 红色划线表示不考虑库仑作用时电子返回时间与返回动能的关系) (a) I = 3×1014 W/cm2, λ = 1200 nm的线偏振激光与H8+团簇相互作用; (b) I = 5×1014 W/cm2, λ = 1400 nm的线偏振激光与H24+团簇相互作用

    Fig. 7.  Time-frequency distribution of higher harmonics calculated by TDSE: (a) H8+ cluster illuminated by the laser with I = 3×1014 W/cm2, λ = 1200 nm; (b) H24+ cluster illuminated by the laser with I = 5×1014 W/cm2, λ = 1400 nm. The black solid line represents the relationship between the sum of the ionization energy of a single atom and return kinetic energy obtained by classical calculation and the return time in the case of considering Coulomb effect, while the red dash line represents the relation between the return time and the return energy of the electron in the case of no considering Coulomb effect.

    图 8  (a) I = 3×1014 W/cm2, λ = 1200 nm的线偏振激光与离子间距不同的H8+团簇相互作用时产生的高次谐波; (b)通过经典计算得到的返回动能与单个原子的电离能之和与返回时间的关系

    Fig. 8.  (a) High-order harmonics generate from the interaction between the linearly polarized laser and H8 + cluster with different ion spacing, where I = 3×1014 W/cm2, λ = 1200 nm; (b) the relationship between the sum of the ionization energy of a single atom and return kinetic energy obtained by classical calculation and the return time.

  • [1]

    Itatani J, Levesque J, Zeidler D, Niikura H, Pépin H, Kieffer J C, Corkum P B, Villeneuve D M 2004 Nature 432 867Google Scholar

    [2]

    祝晓松, 张庆斌, 兰鹏飞, 陆培祥 2016 物理学报 65 224207Google Scholar

    Zhu X S, Zhang Q B, Lan P F, Lu P X 2016 Acta Phys. Sin. 65 224207Google Scholar

    [3]

    Yu S J, Li W Y, Li Y P, Chen Y J 2017 Phys. Rev. A 96 013432Google Scholar

    [4]

    Su N, Yu S J, Li W Y, Yang S P, Chen Y J 2018 Chin. Phys. B 27 054213Google Scholar

    [5]

    Qiao Y, Huo Y Q, Liang H Q, Chen J G, Liu, W J, Yang Y J, Jiang S C 2022 Opt. Express 30 9971Google Scholar

    [6]

    Qiao Y, Huo Y Q, Jiang S C, Yang Y J, Chen J G 2023 Phys. Rev. B 107 075201Google Scholar

    [7]

    陶琛玉, 雷建廷, 余璇, 骆炎, 马新文, 张少锋 2023 物理学报 72 053202Google Scholar

    Tao C Y, Lei J T, Yu X, Luo Y, Ma X W, Zhang S F 2023 Acta Phys. Sin. 72 053202Google Scholar

    [8]

    Papadogiannis N A, Witzel B, Kalpouzos C, Charalambidis D 1999 Phys. Rev. Lett. 83 4289Google Scholar

    [9]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509Google Scholar

    [10]

    Goulielmakis E, Uiberacker M, Kienberger R, Baltuska A, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Drescher M, Krausz F 2004 Science 305 1267Google Scholar

    [11]

    Sandberg R L, Paul A, Raymondson D A, Haedrich S, Gaudiosi D M, Holtsnider J, Tobey R I, Cohen O, Murnane M M, Kapteyn H C, Song C, Miao J, Liu Y, Salmassi F 2007 Phys. Rev. Lett. 99 098103Google Scholar

    [12]

    Iii C D, Rundquist A R, Murnane M M, Kapteyn H C 1998 Science 280 1412Google Scholar

    [13]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [14]

    Yang Y J, Chen G, Chen J G, Zhu Q R 2004 Chin. Phys. Lett. 21 652Google Scholar

    [15]

    Yang Y J, Chen J G, Chi F P, Zhu Q R, Zhang H X, Sun J Z 2007 Chin. Phys. Lett. 24 1537Google Scholar

    [16]

    成春芝, 周效信, 李鹏程 2011 物理学报 60 202Google Scholar

    Cheng C Z, Zhou X X, Li P C 2011 Acta Phys. Sin. 60 202Google Scholar

    [17]

    Artemyev A N, Cederbaum L S , Demekhin P V 2017 Phys. Rev. A 95 033402

    [18]

    刘艳, 郭福明, 杨玉军 2019 物理学报 68 173202Google Scholar

    Liu Y, Guo F M, Yang Y J 2019 Acta Phys. Sin. 68 173202Google Scholar

    [19]

    Zhou X, Lock R, Wagner N, Li W, Kapteyn H C, Murnane M M 2009 Phys. Rev. Lett. 102 073902Google Scholar

    [20]

    于术娟, 刘竹琴, 李雁鹏 2023 物理学报 72 043101Google Scholar

    Yu S J, Liu Z Q, Li Y P 2023 Acta Phys. Sin. 72 043101Google Scholar

    [21]

    Ghimire S, Ndabashimiye G, DiChiara A D, Sistrunk E, Stockman M I, Agostini P, DiMauro L F, Reis D A 2014 J. Phys. B: At. Mol. Opt. Phys. 47 204030Google Scholar

    [22]

    Vampa G, McDonald C R, Orlando G, Corkum P B, Brabec T 2015 Phys. Rev. B 91 064302Google Scholar

    [23]

    Kruchinin S Yu, Krausz F, Yakovlev V S 2018 Rev. Mod. Phys. 90 021002Google Scholar

    [24]

    Li L, Zhang Y F, Lan P F, Huang T F, Zhu X S, Zhai C Y, Yang K, He L X, Zhang Q B, Cao W, Lu P X 2021 Phys. Rev. Lett. 126 187401Google Scholar

    [25]

    Qiao Y, Chen J Q, Huo Y Q, Liang H Q, Yu R X, Chen J G, Liu W J, Jiang S C, Yang Y J 2023 Phys. Rev. A 107 023523Google Scholar

    [26]

    Véniard V, Taïeb R, Maquet A 1999 Phys. Rev. A 60 3952Google Scholar

    [27]

    Vozzi C, Nisoli M, Caumes J P, Sansone G, Stagira S, Silvestri S D 2005 Appl. Phys. Lett. 86 111121Google Scholar

    [28]

    Hu S X, Xu Z Z 1997 Appl. Phys. Lett. 71 2605Google Scholar

    [29]

    Tisch J W G , Ditmire T, Fraser D J, Hay N, Mason M B , Springate E, Marangos J P, Hutchinson M H R 1997 J. Phys. B: At. Mol. Opt. Phys. 30 L709Google Scholar

    [30]

    Aladi M, Márton I, Rácz P, Dombi P, Földes I B 2014 High Power Laser Sci. Eng. 2 E32Google Scholar

    [31]

    Donnelly T D, Ditmire T, Neumann K, Perry M D, Falcone R W 1996 Phys. Rev. Lett. 76 2472Google Scholar

    [32]

    Feng L, Liu H 2015 Phys. Plasmas 22 013107Google Scholar

    [33]

    Numico R, Giulietti D, Giulietti A, Gizzi L A, Roso L 2000 J. Phys. B: At. Mol. Opt. Phys. 33 2605Google Scholar

    [34]

    Vázquez de Aldana J R, Roso L 2001 J. Opt. Soc. Am. B 18 325Google Scholar

    [35]

    Park H, Wang Z, Xiong H, Schoun S B, Xu J, Agostini P, DiMauro L F 2014 Phys. Rev. Lett. 113 263401Google Scholar

    [36]

    Tao Y, Hagmeijer R, Bastiaens H M J, Goh S J, van der Slot P J M, Biedron S G, Milton S V, Boller K J 2017 New J. Phys. 19 083017Google Scholar

    [37]

    Ruf H, Handschin C, Cireasa R, Thiré N, Ferré A, Petit S, Descamps D, Mével E, Constant E, Blanchet V, Fabre B, Mairesse Y 2013 Phys. Rev. Lett. 110 083902Google Scholar

    [38]

    Moreno P, Plaja L, Roso L 1994 Europhys. Lett. 28 629Google Scholar

    [39]

    Zaretsky D F, Korneev P, Becker W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 105402Google Scholar

    [40]

    Bodi B, Aladi M, Racz P, Foldes I B, Dombi P 2019 Opt. Express 27 26721Google Scholar

    [41]

    Véniard V, Taïeb R, Maquet A 2001 Phys. Rev. A 65 013202Google Scholar

    [42]

    Li N N, Zhai Z, Liu X S 2008 Chin. Phys. Lett. 25 2508Google Scholar

    [43]

    Strelkov V, Saalmann U, Becker A, Rost J M 2011 Phys. Rev. Lett. 107 113901Google Scholar

    [44]

    Feit M D, Jr Fleck J A, Steiger A 1982 J. Comput. Phys. 47 412Google Scholar

    [45]

    Saalmann U, Rost J M 2008 Phys. Rev. Lett. 100 133006Google Scholar

  • [1] 张海松, 卢茂聪, 李志刚. 基于膨胀效应的超临界CO2类沸腾临界点模型. 物理学报, 2024, 73(18): 184402. doi: 10.7498/aps.73.20240293
    [2] 姚惠东, 崔波, 马思琦, 余超, 陆瑞锋. 原子错位堆栈增强双层MoS2高次谐波产率. 物理学报, 2021, 70(13): 134207. doi: 10.7498/aps.70.20210731
    [3] 范鑫, 梁红静, 单立宇, 闫博, 高庆华, 马日, 丁大军. 基于高次谐波产生的极紫外偏振涡旋光. 物理学报, 2020, 69(4): 044203. doi: 10.7498/aps.69.20190834
    [4] 蔡怀鹏, 高健, 李博原, 刘峰, 陈黎明, 远晓辉, 陈民, 盛政明, 张杰. 相对论圆偏振激光与固体靶作用产生高次谐波. 物理学报, 2018, 67(21): 214205. doi: 10.7498/aps.67.20181574
    [5] 李夏至, 邹德滨, 周泓宇, 张世杰, 赵娜, 余德尧, 卓红斌. 等离子体光栅靶的表面粗糙度对高次谐波产生的影响. 物理学报, 2017, 66(24): 244209. doi: 10.7498/aps.66.244209
    [6] 罗香怡, 刘海凤, 贲帅, 刘学深. 非均匀激光场中氢分子离子高次谐波的增强. 物理学报, 2016, 65(12): 123201. doi: 10.7498/aps.65.123201
    [7] 王花, 陈琼, 王文广, 厚美瑛. 颗粒气体团簇行为实验研究. 物理学报, 2016, 65(1): 014502. doi: 10.7498/aps.65.014502
    [8] 管仲, 李伟, 王国利, 周效信. 激光驱动晶体发射高次谐波的特性研究. 物理学报, 2016, 65(6): 063201. doi: 10.7498/aps.65.063201
    [9] 余朝, 孙真荣, 郭东升. 高次谐波的Guo-Åberg-Crasemann理论及其截断定律. 物理学报, 2015, 64(12): 124207. doi: 10.7498/aps.64.124207
    [10] 陈高, 杨玉军, 郭福明. 晶体环境下高次谐波谱的截止频率分析. 物理学报, 2013, 62(8): 083202. doi: 10.7498/aps.62.083202
    [11] 韩小静, 王音, 林正喆, 张文献, 庄军, 宁西京. 团簇异构体生长概率的理论预测. 物理学报, 2010, 59(5): 3445-3449. doi: 10.7498/aps.59.3445
    [12] 鄂箫亮, 段海明. 利用Gupta势结合遗传算法研究ConCu55-n(n=0—55)混合团簇的结构演化及基态能量. 物理学报, 2010, 59(8): 5672-5680. doi: 10.7498/aps.59.5672
    [13] 李会山, 李鹏程, 周效信. 强激光场中模型氢原子的势函数对产生高次谐波强度的影响. 物理学报, 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [14] 杨 明, 刘建胜, 蔡 懿, 王文涛, 王 成, 倪国权, 李儒新, 徐至展. 低密度大尺寸团簇形成的诊断研究. 物理学报, 2008, 57(1): 176-180. doi: 10.7498/aps.57.176
    [15] 王 立, 张小安, 杨治虎, 陈熙萌, 张红强, 崔 莹, 邵剑雄, 徐 徐. 高电荷态离子入射Al表面库仑势对靶原子特征谱线强度的影响. 物理学报, 2008, 57(1): 137-142. doi: 10.7498/aps.57.137
    [16] 袁勇波, 刘玉真, 邓开明, 杨金龙. SiN团簇光电子能谱的指认. 物理学报, 2006, 55(9): 4496-4500. doi: 10.7498/aps.55.4496
    [17] 张秋菊, 盛政明, 张 杰. 超短脉冲强激光与固体靶作用产生的高次谐波红移. 物理学报, 2004, 53(7): 2180-2183. doi: 10.7498/aps.53.2180
    [18] 李鹏程, 周效信, 董晨钟, 赵松峰. 强激光场中长程势与短程势原子产生高次谐波与电离特性研究. 物理学报, 2004, 53(3): 750-755. doi: 10.7498/aps.53.750
    [19] 王大威, 刘婷婷, 杨宏, 蒋红兵, 龚旗煌. 介质的非均匀性对高次谐波影响的研究. 物理学报, 2002, 51(9): 2034-2037. doi: 10.7498/aps.51.2034
    [20] 喻 胜, 李宏福, 谢仲怜, 罗 勇. 渐变复合腔回旋管高次谐波注-波互作用非线性模拟. 物理学报, 2000, 49(12): 2455-2459. doi: 10.7498/aps.49.2455
计量
  • 文章访问数:  2064
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-05
  • 修回日期:  2023-08-15
  • 上网日期:  2023-09-05
  • 刊出日期:  2023-11-05

/

返回文章
返回