搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

EAST反磁剪切qmin$\approx $2条件下磁流体力学不稳定性及内部输运垒物理实验结果简述

徐明 徐立清 赵海林 李颖颖 钟国强 郝保龙 马瑞瑞 陈伟 刘海庆 徐国盛 胡建生 万宝年 EAST团队

引用本文:
Citation:

EAST反磁剪切qmin$\approx $2条件下磁流体力学不稳定性及内部输运垒物理实验结果简述

徐明, 徐立清, 赵海林, 李颖颖, 钟国强, 郝保龙, 马瑞瑞, 陈伟, 刘海庆, 徐国盛, 胡建生, 万宝年, EAST团队

Summary of magnetohydrodynamic instabilities and internal transport barriers under condition of qmin$\approx $2 in EAST tokamak

Xu Ming, Xu Li-Qing, Zhao Hai-Lin, Li Ying-Ying, Zhong Guo-Qiang, Hao Bao-Long, Ma Rui-Rui, Chen Wei, Liu Hai-Qing, Xu Guo-Sheng, Hu Jian-Sheng, Wan Bao-Nian, the EAST Team
PDF
HTML
导出引用
  • 托卡马克装置内, 建立和维持内部输运垒结构是提高等离子体约束的重要保障. 本文简单概述了EAST反磁剪切$q_{{\rm{min}}} \approx 2$实验条件下建立和维持内部输运垒的关联物理过程: “离轴锯齿”和双撕裂模不稳定性; 快离子激发的阿尔芬波不稳定性; 热粒子激发的低频模不稳定性等. 首先, “离轴锯齿”是判断实验条件$q_{{\rm{min}}} \leqslant 2$的重要依据. 文中详细介绍了“离轴锯齿”的激发条件、分类方式和先兆模结构等基本特征, 其崩塌事件由m/n = 2/1双撕裂模磁重联诱发产生. 其次, 在“离轴锯齿”振荡期间, 快离子很容易激发比压阿尔芬本征模和反剪切阿尔芬本征模. 这两类阿尔芬本征模的环向模数为$1 \leqslant n \leqslant 5$, 径向位置为环向区域$1.98\ {\rm{m}} \leqslant $$ R \leqslant 2.07\ {\rm{m}}$(磁轴$R_0 \approx 1.9 \ {\rm{m}}$, 归一化小半径$0.2 \leqslant \rho \leqslant 0.45$). 简述阿尔芬波的激发条件和3种不同物理量(热压力梯度、快离子分布函数和环向流速剪切)等之间的关系. 第三, 在“离轴锯齿”振荡期间, 热压力梯度可以诱发低频模不稳定性. 利用一般鱼骨模色散关系很容易得出EAST上低频模的基本特征: 1)离子抗磁漂移频率大小; 2)阿尔芬波极化方向; 3)反应型动理学气球模特征. 低频模不稳定性的激发不依赖快离子, 主要发生在高的压力梯度区$\alpha \propto (1 + \tau) (1 + \eta_{\rm{i}})$, $\tau = T_{\rm{e}}/T_{\rm{i}}$, $\eta_{\rm{i}} = L_{n_{\rm{i}}}/ L_{T_{\rm{i}}}$, 也即是足够高的$\tau$$\eta_{\rm{i}}$. 最后, “离轴锯齿”不稳定性的抑制和内部输运垒结构的建立. EAST内$q_{{\rm{min}}} \approx 2$条件下内部输运垒建立过程中包括3个重要过程: 1)切向(NBI1L)注入比垂直方向(NBI1R)注入的中性束更容易缓解“离轴锯齿”的爆发周期; 2)存在“离轴锯齿”的情况高效缓解微观不稳定性, 且此位形更有利于内部输运垒结构的建立; 3)内部输运垒建立过程中伴随阿尔芬波($1 \leqslant n \leqslant 5$)不稳定性的激发, 内部输运垒维持期间存在热离子温度梯度激发的中尺度微观不稳定性($5 \leqslant n \leqslant 10$)等. 因此, 理解和掌握“离轴锯齿”实验条件的建立和抑制、阿尔芬波的激发和快离子的再分布、热压力梯度相关不稳定性等物理过程, 对于内部输运垒形成机制的理解具有重要的借鉴意义.
    Establishment and sustainment of the structure of internal transport barriers (ITBs) is an important guarantee for the magnetic fusion plasma. The related physics processes for the establishing and sustaining of ITBs with $q_{{\rm{min}}} \approx 2$ are simply summarized as follows: the “off-axis sawteeth” (OAS) mode instability and double tearing mode (DTM) instability, fast ions induced Alfvén eigenmode instability, thermal pressure gradient induced low-frequency modes (LFMs) instability, etc. Firstly, the burst of OAS is an important criterion for evaluating reversed q-profile with $q_{{\rm{min}}} \approx 2$. The excitation conditions, classifications and the structures of precursor modes of OAS are given in detail, and the collapse event is triggered off by the magnetic reconnection of m/n = 2/1 DTM. Secondly, the beta-induced Alfvén eigenmode and reversed shear Alfvén eigenmode are easily excited by the fast ions during the oscillation of OAS. The toroidal mode numbers of the two kinds of Alfvén waves are $1 \leqslant n \leqslant 5$, respectively, which are located at $1.98\ {\rm{m}} \leqslant R \leqslant 2.07\ {\rm{m}}$ with normalized minor radius $0.2 \leqslant \rho \leqslant 0.45$. The excitation conditions are investigated for the condition of $q_{{\rm{min}}} \approx 2$, and three different physical variables, i.e. thermal pressure gradient, fast ions distribution function, and the toroidal flow or flow shear are considered. Thirdly, the LFMs instabilities are excited by the pressure gradient during the oscillation of OAS. The general fishbone-like dispersion relationship (GFLDR) is adopted for solving the basic features of LFMs: 1) the frequency of LFMs scales with ion diamagnetic frequency; 2) the LFMs has the Alfvén polarization direction; 3) the LFMs are a reactive-type kinetic ballooning mode. The excitation of LFMs does not depend on the fast ions, which is taken place in a higher pressure gradient regime $\alpha \propto (1 + \tau) $$ (1 + \eta_{\rm{i}})$, $\tau = T_{\rm{e}}/T_{\rm{i}}$, $\eta_{\rm{i}} = L_{n_{\rm{i}}}/ L_{T_{\rm{i}}}$. In the end, the suppression of OAS and establishment of ITBs are achieved. Three important processes appear under the condition of $q_{{\rm{min}}} \approx 2$ in EAST: 1) the tangential injection (NBI1L) of NBI is easier for the suppression of OAS than the perpendicular injection (NBI1R); 2) the micro-instability can be suppressed during the oscillation of OAS, and the reversed shear q-profile is more favorable in the establishment of the structure of ITBs; 3) the establishment of ITBs is accompanied by the excitation of Alfvén wave instability (bigger toroidal mode number: $1 \leqslant n \leqslant 5$), the sustainment of ITBs is accompanied by the thermal ion temperature gradient induced instability (median size: $5 \leqslant n \leqslant 10$). Therefore, for the establishment of ITBs, it is important to understand the establishment and suppression of OAS, the excitation of Alfvén wave instability and the redistributed fast ions, and the related instability of thermal pressure gradient.
      通信作者: 徐明, mxu@ipp.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFE03020000, 2018YFE0304100)和国家自然科学基金(批准号: 12175271, 11975267) 资助的课题.
      Corresponding author: Xu Ming, mxu@ipp.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2019YFE03020000, 2018YFE0304100) and the National Natural Science Foundation of China (Grant Nos. 12175271, 11975267).
    [1]

    Ida K, Fujita T 2018 Plasma Phys. Control. Fusion 60 033001Google Scholar

    [2]

    Connor J W, Fukuda T, Garbet X, et al. 2004 Nuclear Fusion 44 R1Google Scholar

    [3]

    Wolf R C 2003 Plasma Phys. Control. Fusion 45 R1Google Scholar

    [4]

    Mazzi S, Garcia J, Zarzoso D, et al. 2022 Nat. Phys. 18 776Google Scholar

    [5]

    Han H, Park S J, Sung C, Kang J, Lee Y H, Chung J, Hahm T S, Kim B, Park J K, Bak J G, Cha M S, Choi G J, Choi M J, Gwak J, Hahn S H, Jang J, Lee K C, Kim J H, Kim S K, Kim W C, Ko J, Ko W H, Lee C Y, Lee J H, Lee J K, Lee J P, Lee K D, Park Y S, Seo J, Yang S M, Yoon S W, Na Y S 2022 Nature 609 269Google Scholar

    [6]

    Di Siena A, Bilato R, Görler T, et al. 2021 Phys. Rev. Lett. 127 025002Google Scholar

    [7]

    Koide Y, Kikuchi M, Mori M, Tsuji S, Ishida S, Asakura N, Kamada Y, Nishitani T, Kawano Y, Hatae T, Fujita T, Fukuda T, Sakasai A, Kondoh T, Yoshino R, Neyatani Y 1994 Phys. Rev. Lett. 72 3662Google Scholar

    [8]

    Levinton F M, Zarnstorff M C, Batha S H, Bell M, Bell R E, Budny R V, Bush C, Chang Z, Fredrickson E, Janos A, Manickam J, Ramsey A, Sabbagh S A, Schmidt G L, Synakowski E J, Taylor G 1995 Phys. Rev. Lett. 75 4417Google Scholar

    [9]

    Synakowski E J, Batha S H, Beer M A, Bell M G, Bell R E, Budny R V, Bush C E, Efthimion P C, Hammett G W, Hahm T S, LeBlanc B, Levinton F, Mazzucato E, Park H, Ramsey A T, Rewoldt G, Scott S D, Schmidt G, Tang W M, Taylor G, Zarnstorff M C 1997 Phys. Rev. Lett. 78 2972Google Scholar

    [10]

    Bell R E, Levinton F M, Batha S H, Synakowski E J, Zarnstorff M C 1998 Phys. Rev. Lett. 81 1429Google Scholar

    [11]

    Strait E J, Lao L L, Mauel M E, Rice B W, Taylor T S, Burrell K H, Chu M S, Lazarus E A, Osborne T H, Thompson S J, Turnbull A D 1995 Phys. Rev. Lett. 75 4421Google Scholar

    [12]

    Conway G D, Borba D N, Alper B, Bartlett D V, Gormezano C, von Hellermann M G, Maas A C, Parail V V, Smeulders P, Zastrow K D 2000 Phys. Rev. Lett. 84 1463Google Scholar

    [13]

    Crisanti F, Litaudon X, Mailloux J, et al. 2002 Phys. Rev. Lett. 88 145004Google Scholar

    [14]

    Rice J E, Boivin R L, Bonoli P T, Goetz J A, Granetz R S, Greenwald M J, Hutchinson I H, Marmar E S, Schilling G, Snipes J A, Wolfe S M, Wukitch S J, Fiore C L, Irby J H, Mossessian D, Porkolab M 2001 Nuclear Fusion 41 277Google Scholar

    [15]

    Chang Z, Park W, Fredrickson E D, Batha S H, Bell M G, Bell R, Budny R V, Bush C E, Janos A, Levinton F M, McGuire K M, Park H, Sabbagh S A, Schmidt G L, Scott S D, Synakowski E J, Takahashi H, Taylor G, Zarnstorff M C 1996 Phys. Rev. Lett. 77 3553Google Scholar

    [16]

    Xu M, Hu L, Zhou T, Zhang L, Xu L, Duan Y, Zang Q, Liu H, Gong X, Xu G, EAST Team 2021 Nuclear Fusion 61 106008Google Scholar

    [17]

    Xu M, Zhao H L, Zang Q, Zhong G Q, Xu L Q, Liu H Q, Chen W, Huang J, Hu L Q, Xu G S, Gong X Z, Qian J P, Liu Y, Zhang T, Zhang Y, Sun Y W, Zhang X D, Wan B N 2019 Nuclear Fusion 59 084005Google Scholar

    [18]

    Xu M, Zhao H, Zhang J, Xu L, Liu H, Li G, Zhong G, Zang Q, Hu L, Gong X, Xu G, Zhang X, Wan B, EAST Team 2020 Nuclear Fusion 60 112005Google Scholar

    [19]

    Xu M, Ma R, Xu L, Li Y, Zhao H, Chen W, Wang S, Li G, Zhong G, Wang F, Jin Y, Huang J, Zang Q, Liu H, Hu L, Gong X, Xu G, Hu J, Wan B, EAST Team 2022 Nuclear Fusion 62 126041Google Scholar

    [20]

    Gorelenkov N N, Berk H L, Fredrickson E, Sharapov S E, Contributors J E 2007 Phys. Lett. A 370 70Google Scholar

    [21]

    Gorelenkov N N, Berk H L, Crocker N A, Fredrickson E D, Kaye S, Kubota S, Park H, Peebles W, Sabbagh S A, Sharapov S E, Stutmat D, Tritz K, Levinton F M, Yuh H, Team T N, Contributors J E 2007 Plasma Phys. Control. Fusion 49 B371Google Scholar

    [22]

    Heidbrink W W, Van Zeeland M A, Austin M E, Bierwage A, Chen L, Choi G J, Lauber P, Lin Z, McKee G R, Spong D A 2020 Nuclear Fusion 61 016029Google Scholar

    [23]

    Ishii Y, Azumi M, Kishimoto Y 2002 Phys. Rev. Lett. 89 205002Google Scholar

    [24]

    Wang Z, Wang X, Dong J, Lei Y, Long Y, Mou Z, Qu W 2007 Phys. Rev. Lett. 99 185004Google Scholar

    [25]

    Janvier M, Kishimoto Y, Li J Q 2011 Phys. Rev. Lett. 107 195001Google Scholar

    [26]

    Wang X, Wang X 2017 Nuclear Fusion 57 016039Google Scholar

    [27]

    Zhang W, Ma Z W, Lu X Q, Zhang H W 2020 Nuclear Fusion 60 126022Google Scholar

    [28]

    Porcelli F, Boucher D, Rosenbluth M N 1996 Plasma Phys. Control. Fusion 38 2163Google Scholar

    [29]

    Group I P E 1999 Nuclear Fusion 39 2251Google Scholar

    [30]

    Imbeaux F, Giruzzi G, Maget P, et al. 2006 Phys. Rev. Lett. 96 045004Google Scholar

    [31]

    Maget P, Imbeaux F, Giruzzi G, et al. 2006 Nuclear Fusion 46 797Google Scholar

    [32]

    Maget P, Huysmans G T A, Garbet X, et al. 2007 Phys. Plasmas 14 052509Google Scholar

    [33]

    Wei L, Wang Z X 2014 Phys. Plasmas 21 062505Google Scholar

    [34]

    Wei L, Wang Z X 2014 Nuclear Fusion 54 043015Google Scholar

    [35]

    Zhang W, Ma Z W, Zhu J, Zhang H W 2019 Plasma Phys. Control. Fusion 61 075002Google Scholar

    [36]

    Zhang W, Lin X, Ma Z W, Lu X Q, Zhang H W 2020 Phys. Plasmas 27 122509Google Scholar

    [37]

    Yu Q, Günter S 2022 Nuclear Fusion 62 126056Google Scholar

    [38]

    Kessel C, Manickam J, Rewoldt G, Tang W M 1994 Phys. Rev. Lett. 72 1212Google Scholar

    [39]

    Citrin J, Garcia J, Görler T, Jenko F, Mantica P, Told D, Bourdelle C, Hatch D R, Hogeweij G M D, Johnson T, Pueschel M J, Schneider M 2015 Plasma Phys. Control. Fusion 57 014032Google Scholar

    [40]

    Citrin J, Mantica P 2023 Plasma Phys. Control. Fusion 65 033001Google Scholar

    [41]

    Liu P, Wei X, Lin Z, Brochard G, Choi G J, Heidbrink W W, Nicolau J H, McKee G R 2022 Phys. Rev. Lett. 128 185001Google Scholar

    [42]

    Heidbrink W W, Strait E J, Chu M S, Turnbull A D 1993 Phys. Rev. Lett. 71 855Google Scholar

    [43]

    Turnbull A D, Strait E J, Heidbrink W W, Chu M S, Duong H H, Greene J M, Lao L L, Taylor T S, Thompson S J 1993 Phys. Fluids B 5 2546Google Scholar

    [44]

    Zonca F, Chen L, Santoro R A 1996 Plasma Phys. Control. Fusion 38 2011Google Scholar

    [45]

    Wang X, Zonca F, Chen L 2010 Plasma Phys. Control. Fusion 52 115005Google Scholar

    [46]

    Shi P W, Chen W, Shi Z B, Duan X R, Yang Z C, Ma R R, Zhong W L, Jiang M, Yu L M, Liang A S, Wen J, Yu D L, Liu Y, Yang Q W 2019 Nuclear Fusion 59 066015Google Scholar

    [47]

    Duan S, Fu G Y, Cai H, Li D 2022 Nuclear Fusion 62 056002Google Scholar

    [48]

    Kramer G J, Cheng C Z 2023 Plasma Phys. Control. Fusion 65 015015Google Scholar

    [49]

    Li G, Li Y, Xiao Y 2023 Nuclear Fusion 63 016009Google Scholar

    [50]

    Breizman B N, Sharapov S E 2011 Plasma Phys. Control. Fusion 53 054001Google Scholar

    [51]

    Bass E M, Waltz R E 2013 Phys. Plasmas 20 012508Google Scholar

    [52]

    Fasoli A, Testa D, Sharapov S, Berk H L, Breizman B, Gondhalekar A, Heeter R F, Mantsinen M, contributors to the E J W 2002 Plasma Phys. Control. Fusion 44 B159Google Scholar

    [53]

    Chen W, Yu L, Liu Y, Ding X T, Xie H S, Zhu J, Yu L M, Ji X Q, Li J X, Li Y G, Yu D L, Shi Z B, Song X M, Cao J Y, Song S D, Dong Y B, Zhong W L, Jiang M, Cui Z Y, Huang Y, Zhou Y, Dong J Q, Xu M, Xia F, Yan L W, Yang Q W, Duan X R, HL-2A Team 2014 Nuclear Fusion 54 104002Google Scholar

    [54]

    Kramer G J, Gorelenkov N N, Nazikian R, Cheng C Z 2004 Plasma Phys. Control. Fusion 46 L23Google Scholar

    [55]

    Xu M, Zhong G, Hao B, Shen W, Hu L, Chen W, Qiu Z, Zhang X, Hu Y, Li Y, Zhao H, Liu H, Lyu B, EAST Team 2021 Chin. Phys. Lett. 38 085201Google Scholar

    [56]

    Sharapov S, Alper B, Berk H, Borba D, Breizman B, Challis C, Classen I, Edlund E, Eriksson J, Fasoli A, Fredrickson E, Fu G, Garcia-Munoz M, Gassner T, Ghantous K, Goloborodko V, Gorelenkov N, Gryaznevich M, Hacquin S, Heidbrink W, Hellesen C, Kiptily V, Kramer G, Lauber P, Lilley M, Lisak M, Nabais F, Nazikian R, Nyqvist R, Osakabe M, Thun C P v, Pinches S, Podesta M, Porkolab M, Shinohara K, Schoepf K, Todo Y, Toi K, Zeeland M V, Voitsekhovich I, White R, Yavorskij V, ITPA EP TG and JET-EFDA Contributors 2013 Nuclear Fusion 53 104022Google Scholar

    [57]

    Qi L, Dong J Q, Bierwage A, Lu G, Sheng Z M 2013 Phys. Plasmas 20 032505Google Scholar

    [58]

    Zhong G Q, Hu L Q, Pu N, Zhou R J, Xiao M, Cao H R, Zhu Y B, Li K, Fan T S, Peng X Y, Du T F, Ge L J, Huang J, Xu G S, Wan B N, EAST Team 2016 Rev. Sci. Instrum. 87 11D820Google Scholar

    [59]

    Chen L, Zonca F 2007 Nuclear Fusion 47 S727Google Scholar

    [60]

    Ma R, Chen L, Zonca F, Li Y, Qiu Z 2022 Plasma Phys. Control. Fusion 64 035019Google Scholar

    [61]

    Ma R, Heidbrink W W, Chen L, Zonca F, Qiu Z 2023 Phys. Plasmas 30 042105Google Scholar

    [62]

    Chavdarovski I, Zonca F 2014 Phys. Plasmas 21 052506Google Scholar

    [63]

    Chen L, Zonca F 2017 Phys. Plasmas 24 072511Google Scholar

    [64]

    Yang Y, Gao X, Liu H Q, Li G Q, Zhang T, Zeng L, Liu Y K, Wu M Q, Kong D F, Ming T F, Han X, Wang Y M, Zang Q, Lyu B, Li Y Y, Duan Y M, Zhong F B, Li K, Xu L Q, Gong X Z, Sun Y W, Qian J P, Ding B J, Liu Z X, Liu F K, Hu C D, Xiang N, Liang Y F, Zhang X D, Wan B N, Li J G, Wan Y X, EAST Team 2017 Plasma Phys. Control. Fusion 59 085003Google Scholar

    [65]

    Gao X, Yang Y, Zhang T, Liu H, Li G, Ming T, Liu Z, Wang Y, Zeng L, Han X, Liu Y, Wu M, Qu H, Shen B, Zang Q, Yu Y, Kong D, Gao W, Zhang L, Cai H, Wu X, Hanada K, Zhong F, Liang Y, Hu C, Liu F, Gong X, Xiao B, Wan B, Zhang X, Li J, EAST Team 2017 Nuclear Fusion 57 056021Google Scholar

    [66]

    Chu Y Q, Liu H Q, Zhang S B, Jie Y X, Lian H, Wu M Q, Zhu X, Wu C B, Xu L Q, Wang Y F, Wang S X, Zhang T, Yang Y, Hanada K, Lyu B, Li Y Y, Zang Q 2021 Plasma Phys. Control. Fusion 63 105003Google Scholar

    [67]

    Han X, Liu Y, Zhou T F, Zhang T, Shi T H, Li Y Y, Yuan Y, Mao S T, Jin Y F, Wu X H, Wang S X, Yang Y, Wen F, Huang J, Liu S C, Ye K X, Wu M F, Geng K N, Li G S, Zhong F B, Xiang H M, Gao X, EAST Team 2022 Nuclear Fusion 62 064005Google Scholar

    [68]

    Liu Z X, Ge W L, Wang F, Liu Y J, Yang Y, Wu M Q, Wang Z X, Zhang X X, Li H, Xie J L, Lan T, Mao W, Liu A D, Zhou C, Ding W X, Zhuang G, Liu W D 2020 Nuclear Fusion 60 122001Google Scholar

    [69]

    Zhang B, Gong X, Qian J, Zeng L, Xu L Q, Duan Y M, Zhang J Y, Hu Y C, Jia T Q, Li P, Liang R R, Wang Z H, Zhu X, Wang S X, Ma Q, Ye L, Huang J, Ding R, EAST Team 2022 Nuclear Fusion 62 126064Google Scholar

    [70]

    Ge W, Wang Z X, Wang F, Liu Z, Xu L 2023 Nuclear Fusion 63 016007Google Scholar

    [71]

    Wang S, Cai H, Chen X, Li D 2023 Plasma Phys. Control. Fusion 65 055018Google Scholar

    [72]

    Wu M, Liu Z, Li G, Han X, Zhang T, Li Y, Zhou T, Chao Y, Wang S, Wu X, Geng K, Xiang H, Zhong F, Ye K, Huang J, Zhou Z, Yang S, Wen F, Wang Y, Zhang S, Zhuang G, Gao X, East Team 2023 Nuclear Fusion 63 016008Google Scholar

    [73]

    Wang J, Wang Z X, Wei L, Liu Y 2017 Nuclear Fusion 57 046007Google Scholar

    [74]

    Brower D L, Peebles W A, Luhmann N C, Savage R L 1985 Phys. Rev. Lett. 54 689Google Scholar

    [75]

    Chen W, Yu D L, Ma R R, Shi P W, Li Y Y, Shi Z B, Du H R, Ji X Q, Jiang M, Yu L M, Yuan B S, Li Y G, Yang Z C, Zhong W L, Qiu Z Y, Ding X T, Dong J Q, Wang Z X, Wei H L, Cao J Y, Song S D, Song X M, Yi L, Yang Q W, Xu M, Duan X R 2018 Nuclear Fusion 58 056004Google Scholar

    [76]

    Du X D, Hong R J, Heidbrink W W, et al. 2021 Phys. Rev. Lett. 127 025001Google Scholar

  • 图 1  EAST托卡马克装置反磁剪切$q_{{\rm{min}}} \leqslant 2$条件下双撕裂模(DTM)和离轴锯齿(OAS)、快离子激发低频阿尔芬波(BAEs, RSAEs)、热压力梯度激发低频模(LFMs)和内部输运垒(ITBs)等物理过程之间的相互关系

    Fig. 1.  Sketch of different physics phenomena, namely, Double tearing modes (DTM) and “off-axis” sawteeth (OAS), fast ions induced low-frequency Alfvén waves, thermal pressure gradient induced low-frequency mode (LFM) and internal transport barriers (ITBs) under the condition of $q_{{\rm{min}}} \leqslant 2$ in the EAST tokamak.

    图 2  EAST上离轴锯齿的不同激发条件 (a)—(d) ICRH辅助条件下离轴锯齿和边界局域模共存现象(#62863); (e), (f)提高ECRH功率阈值(#62085)和(g), (h)降低环向磁场$B_\phi$实现离轴ECRH加热(#66465)条件下激发的离轴锯齿现象

    Fig. 2.  Several different conditions for the excitation of OAS: (a)–(d) Coexistence of OAS and ELM instabilities during the ICRH (#62863); (e), (f) effect of ECRH with power threshold (#62085); (g), (h) effect of toroidal field $B_\phi$ on the deposition of ECRH (#66465)

    图 3  离轴锯齿可以分为中心(Central)、环形(Annular)和“广义锯齿”崩塌事件三大类 (a) 不同径向$T_{\rm{e}}$信号随时间演化; (b) 中心崩塌事件前后的$T_{\rm{e}}$剖面的变化; (c)—(e)三类崩塌事件发生前后的温度变化量$\Delta T_{\rm{e}}/T_{\rm{e}}$ (磁轴$R_0 \approx 1.9\ {\rm{m}}$)

    Fig. 3.  The OAS can be divided into three categories: Central crash, annular crash and “generalized-sawteeth” crash events. (a) $T_{\rm{e}}$ for different radial positions; (b) $T_{\rm{e}}$-profiles before and after the central crash event; (c)–(e) the relative alterations of $\Delta T_{\rm{e}}/T_{\rm{e}}$ for the three cases (magnetic axis: $R_0 \approx 1.9\ {\rm{m}}$)

    图 4  离轴锯齿崩塌前激发m/n = 2/1先兆振荡模(图2 #66465阴影区间放大结果) (a) 不同径向ECE信号; (b) SXR阵列相对扰动信号(${\text{δ}} I_{{\rm{sx}}}/I_{{\rm{sx}}}$)沿着Z方向随时间演化分布图; (c) 边界磁探针频谱图; (d) ECE阵列相对扰动信号(${\text{δ}} T_{\rm{e}}/T_{\rm{e}}$)沿着R方向随时间演化分布图. 说明: 离轴锯齿崩塌前可以观察到两次不同的崩塌事件($t\approx 4.043\ {\rm{s}}$$t\approx 4.05\ {\rm{s}}$)

    Fig. 4.  The m/n = 2/1 precursor mode is taken place before the final collapse of OAS: (a) ECE signals of different radial positions; (b) relative fluctuation of ${\text{δ}} I_{{\rm{sx}}}/I_{{\rm{sx}}}$ for SXR array along Z direction; (c) spectrogram of edge magnetic signal; (d) relative fluctuation of ${\text{δ}} T_{\rm{e}}/T_{\rm{e}}$ for the ECE array along R direction. Note: two different collapse events are observed successively ($t\approx 4.043\ {\rm{s}}$ and $t\approx 4.05\ {\rm{s}}$)

    图 5  BAEs和RSAEs的径向位置$1.98\ {\rm{m}} \leqslant R \leqslant 2.07\ {\rm{m}}$ (归一化小半径$ 0.2 \leqslant \rho \leqslant 0.45$), $q_{{\rm{min}}}$位置为$R \approx 2.025\ {\rm{m}}$ ($\rho \approx 0.3$)

    Fig. 5.  Radial coverage of the pairs of BAEs-RSAEs is located at $1.98\ {\rm{m}} \leqslant R \leqslant 2.07\ {\rm{m}}$ (the radial position of $q_{{\rm{min}}}$ should be located at $R \approx 2.025\ {\rm{m}}$).

    图 6  EAST上离轴锯齿振荡期间阿尔芬波不稳定性的激发条件对比 (a) NBI功率; (b) 中子产额$S_{\rm{n}}$; (c) 等离子体储能$W_{{\rm{dia}}}$; (d) 芯部电子温度$T_{{\rm{e}}0}$; (e) 径向$R \approx 2.02\ {\rm{m}}$附近ECE信号功率谱; (f) #60223下ECE信号频谱图

    Fig. 6.  Excitation conditions of Alfvén waves during the oscillation of OAS in EAST: (a) Input powers of NBI; (b) neutron yield $S_{\rm{n}}$; (c) plasma stored energy $W_{{\rm{dia}}}$; (d) core electron temperature $T_{{\rm{e}}0}$; (e) power spectra of ECE signal at $R \approx 2.02\ {\rm{m}}$; (f) spectrogram of ECE signal for #60223

    图 7  影响阿尔芬本征模激发的3个相关因素 (a) 温度剖面($T_{\rm{e}}$为点划线; $T_{\rm{i}}$为实线); (b) 温度归一化梯度标长($R/L_{T_{\rm{e}}}$为点划线, $R/L_{T_{\rm{i}}}$为实线); (c) RNC诊断测量的中子计数率空间分布(高能离子密度); (d), (e) NUBEAM/TRANSP代码计算不同NBI束方向下的高能离子的经典分布函数; (f) CXRS诊断测量的环向速度归一化梯度标长($R/L_{v_\phi}$)

    Fig. 7.  Three correlated factors for the excitation of Alfvén eigenmodes: (a) Profiles of $T_{\rm{e}}$ and $T_{\rm{i}}$; (b) normalized temperature gradients of $R/L_{T_{\rm{e}}}$ and $R/L_{T_{\rm{i}}}$; (c) counts of neutron flux measured by RNC; (d), (e) classical distribution functions for the two conditions are estimated by the NUBEAM/TRANSP; (f) the normalized gradient of $R/L_{v_\phi}$ measured by CXRS

    图 8  两种不同类型离轴锯齿崩塌前RSAEs向上扫频斜率对比结果

    Fig. 8.  Upward sweeping rates of RSAEs different branches before the central/annular collapse events.

    图 9  低频模和阿尔芬本征模之间的共存关系 (a), (b) BAEs-RSAEs和LFMs的频谱图; (c) LFMs和BAEs的共存时间正比于离轴锯齿的振荡周期

    Fig. 9.  Coexistence between LFMs and Alfvén eigenmodes: (a), (b) The spectrogram of the pairs of BAEs-RSAEs and LFMs; (c) the coexistence time between LFMs and BAEs versus the OAS period.

    图 10  EAST上LFMs不稳定性激发条件的实验研究 (a) #61960和#61970两炮的功率谱密度; (b), (c)电子和离子温度剖面, 其中低频模的径向位置为黄色阴影区间所示

    Fig. 10.  Experimental investigation of the excitation condition of LFMs instability on EAST: (a) Power spectra densities for the two shots #61960 and #61970; (b), (c) profiles of $T_{\rm{e}}$ and $T_{\rm{i}}$, where the radial position of LFMs is demonstrated by the yellow shaded region

    图 11  利用GFLDR代码数值求解EAST上LFMs不稳定性的激发条件和基本特征 (a) LFMs增长率$\gamma$和($\eta_{\rm{i}} = $$ L_{n_{\rm{i}}}/ L_{T_{\rm{i}}}$, $\tau = T_{\rm{e}}/T_{\rm{i}}$)之间的依赖关系; (b) LFMs的频率f和增长率$\gamma$; (c) 极化方向$|{\cal{S}}|$$\varOmega_{\ast {\rm{pi}}}\equiv \omega_{\ast {\rm{pi}}}/\omega_{{\rm{ti}}}$之间的关系

    Fig. 11.  Excitation conditions and basic features of LFMs are numerically calculated by GFLDR in EAST: (a) Growth rate $\gamma$ of LFMs versus ($\eta_{\rm{i}} = L_{n_{\rm{i}}}/ L_{T_{\rm{i}}}$, $\tau = T_{\rm{e}}/T_{\rm{i}}$); (b) mode frequency f and growth rate $\gamma$; (c) polarization $|{\cal{S}}|$ of LFMs on $\varOmega_{\ast {\rm{pi}}}\equiv \omega_{\ast {\rm{pi}}}/\omega_{{\rm{ti}}}$

    图 12  利用不同注入方向的中性束(NBI1R为垂直方向, NBI1L为切向注入)实现离轴锯齿的缓解和抑制 (a)储能$W_{{\rm{dia}}}$; (b) #61962 NBI注入源功率; (c)芯部的旋转速度; (d)芯部电子温度$T_{{\rm{e}}0}$

    Fig. 12.  Suppression of OAS by the different injection direction of NBI: (a) Stored energy $W_{{\rm{dia}}}$; (b) source power of NBI in #61962; (c) central rotation velocity $v_{\phi 0}$; (d) central electron temperature $T_{{\rm{e}}0}$

    图 13  离轴锯齿振荡期间微观不稳定性的激发和抑制 (a) POINT诊断不同极向位置测量到的弦平均电子密度$\langle n_{\rm{e}} \rangle$; (b), (c)电子和离子温度的归一化梯度长度$R/L_{T_{\rm{e}}}$$R/L_{T_{\rm{i}}}$; (d), (e)不同环向位置POINT和SXR诊断测量到的相对扰动$\Delta n_{\rm{e}}/n_{\rm{e}}$$\Delta I_{{\rm{sx}}} /I_{{\rm{sx}}}$

    Fig. 13.  One kinds of micro-instability is excited and suppressed during the oscillation of OAS: (a) Line-integrated electron densities $\langle n_{\rm{e}} \rangle$ for different chord position of POINT array; (b), (c) normalized gradient of $R/L_{T_{\rm{e}}}$ and $R/L_{T_{\rm{i}}}$; (d), (e) relative fluctuations of $\Delta n_{\rm{e}}/n_{\rm{e}}$ and $\Delta I_{{\rm{sx}}} /I_{{\rm{sx}}}$ respectively for the different toroidal positions of POINT and SXR arrays

    图 14  内部输运垒建立过程中伴随快离子或热粒子不稳定性事件 (a1), (a2)归一化$\beta_{\rm{N}}$; (b1), (b2)电子$T_{{\rm{e}}}$和离子$T_{{\rm{i}}0}$ 温度; (c1), (c2) ECE诊断测量到的频谱图

    Fig. 14.  Energetic ions and thermal pressure gradient instabilities are observed during the establishment of ITBs: (a1), (a2) Normalized $\beta_{\rm{N}}$; (b1), (b2) electron $T_{{\rm{e}}0}$ and $T_{{\rm{i}}0}$ temperatures; (c1), (c2) spectrogram of ECE signal

    图 15  内部输运垒建立过程中温度和旋转剖面 (a) $T_{\rm{i}}$; (b) $R/L_{T_{\rm{i}}}$; (c) $v_\phi$; (d) $\Delta T_{\rm{e}}/T_{\rm{e}}$

    Fig. 15.  Profiles of (a) $T_{\rm{i}}$, (b) $R/L_{T_{\rm{i}}}$, (c) $v_\phi$, (d) $\Delta T_{\rm{e}}/T_{\rm{e}}$ for the establishment of ITBs.

    表 1  EAST上离轴锯齿和一般锯齿的对比图

    Table 1.  Direct comparison between the OAS with conventional sawteeth in EAST.

    “锯齿”类型
    离轴锯齿 一般锯齿
    安全因子q 反磁剪切 单调分布
    qmin $q_{\rm{min}} \leqslant 2$ ($q_0 > 1$) $q_0 \leqslant 1$
    先兆模 m/n = 2/1 (D)TM m/n = 1/1 kink
    径向位置/m HFS: $1.7 \leqslant R \leqslant 1.8$
    LFS: $2 \leqslant R \leqslant 2.1 $
    $1.8 \leqslant R \leqslant $2
    $\Delta T_{{\rm{e0}}}/T_{{\rm{e0}}}$ $\geqslant 30{\text{%}}$ $\leqslant 10{\text{%}} $
    “混合半径”
    $D_\alpha$脉冲
    注: EAST上磁轴位置$R_0 \approx 1.9\ {\rm{m}}$, 小半径$a \approx 0.45\ {\rm{m}}$.
    下载: 导出CSV
  • [1]

    Ida K, Fujita T 2018 Plasma Phys. Control. Fusion 60 033001Google Scholar

    [2]

    Connor J W, Fukuda T, Garbet X, et al. 2004 Nuclear Fusion 44 R1Google Scholar

    [3]

    Wolf R C 2003 Plasma Phys. Control. Fusion 45 R1Google Scholar

    [4]

    Mazzi S, Garcia J, Zarzoso D, et al. 2022 Nat. Phys. 18 776Google Scholar

    [5]

    Han H, Park S J, Sung C, Kang J, Lee Y H, Chung J, Hahm T S, Kim B, Park J K, Bak J G, Cha M S, Choi G J, Choi M J, Gwak J, Hahn S H, Jang J, Lee K C, Kim J H, Kim S K, Kim W C, Ko J, Ko W H, Lee C Y, Lee J H, Lee J K, Lee J P, Lee K D, Park Y S, Seo J, Yang S M, Yoon S W, Na Y S 2022 Nature 609 269Google Scholar

    [6]

    Di Siena A, Bilato R, Görler T, et al. 2021 Phys. Rev. Lett. 127 025002Google Scholar

    [7]

    Koide Y, Kikuchi M, Mori M, Tsuji S, Ishida S, Asakura N, Kamada Y, Nishitani T, Kawano Y, Hatae T, Fujita T, Fukuda T, Sakasai A, Kondoh T, Yoshino R, Neyatani Y 1994 Phys. Rev. Lett. 72 3662Google Scholar

    [8]

    Levinton F M, Zarnstorff M C, Batha S H, Bell M, Bell R E, Budny R V, Bush C, Chang Z, Fredrickson E, Janos A, Manickam J, Ramsey A, Sabbagh S A, Schmidt G L, Synakowski E J, Taylor G 1995 Phys. Rev. Lett. 75 4417Google Scholar

    [9]

    Synakowski E J, Batha S H, Beer M A, Bell M G, Bell R E, Budny R V, Bush C E, Efthimion P C, Hammett G W, Hahm T S, LeBlanc B, Levinton F, Mazzucato E, Park H, Ramsey A T, Rewoldt G, Scott S D, Schmidt G, Tang W M, Taylor G, Zarnstorff M C 1997 Phys. Rev. Lett. 78 2972Google Scholar

    [10]

    Bell R E, Levinton F M, Batha S H, Synakowski E J, Zarnstorff M C 1998 Phys. Rev. Lett. 81 1429Google Scholar

    [11]

    Strait E J, Lao L L, Mauel M E, Rice B W, Taylor T S, Burrell K H, Chu M S, Lazarus E A, Osborne T H, Thompson S J, Turnbull A D 1995 Phys. Rev. Lett. 75 4421Google Scholar

    [12]

    Conway G D, Borba D N, Alper B, Bartlett D V, Gormezano C, von Hellermann M G, Maas A C, Parail V V, Smeulders P, Zastrow K D 2000 Phys. Rev. Lett. 84 1463Google Scholar

    [13]

    Crisanti F, Litaudon X, Mailloux J, et al. 2002 Phys. Rev. Lett. 88 145004Google Scholar

    [14]

    Rice J E, Boivin R L, Bonoli P T, Goetz J A, Granetz R S, Greenwald M J, Hutchinson I H, Marmar E S, Schilling G, Snipes J A, Wolfe S M, Wukitch S J, Fiore C L, Irby J H, Mossessian D, Porkolab M 2001 Nuclear Fusion 41 277Google Scholar

    [15]

    Chang Z, Park W, Fredrickson E D, Batha S H, Bell M G, Bell R, Budny R V, Bush C E, Janos A, Levinton F M, McGuire K M, Park H, Sabbagh S A, Schmidt G L, Scott S D, Synakowski E J, Takahashi H, Taylor G, Zarnstorff M C 1996 Phys. Rev. Lett. 77 3553Google Scholar

    [16]

    Xu M, Hu L, Zhou T, Zhang L, Xu L, Duan Y, Zang Q, Liu H, Gong X, Xu G, EAST Team 2021 Nuclear Fusion 61 106008Google Scholar

    [17]

    Xu M, Zhao H L, Zang Q, Zhong G Q, Xu L Q, Liu H Q, Chen W, Huang J, Hu L Q, Xu G S, Gong X Z, Qian J P, Liu Y, Zhang T, Zhang Y, Sun Y W, Zhang X D, Wan B N 2019 Nuclear Fusion 59 084005Google Scholar

    [18]

    Xu M, Zhao H, Zhang J, Xu L, Liu H, Li G, Zhong G, Zang Q, Hu L, Gong X, Xu G, Zhang X, Wan B, EAST Team 2020 Nuclear Fusion 60 112005Google Scholar

    [19]

    Xu M, Ma R, Xu L, Li Y, Zhao H, Chen W, Wang S, Li G, Zhong G, Wang F, Jin Y, Huang J, Zang Q, Liu H, Hu L, Gong X, Xu G, Hu J, Wan B, EAST Team 2022 Nuclear Fusion 62 126041Google Scholar

    [20]

    Gorelenkov N N, Berk H L, Fredrickson E, Sharapov S E, Contributors J E 2007 Phys. Lett. A 370 70Google Scholar

    [21]

    Gorelenkov N N, Berk H L, Crocker N A, Fredrickson E D, Kaye S, Kubota S, Park H, Peebles W, Sabbagh S A, Sharapov S E, Stutmat D, Tritz K, Levinton F M, Yuh H, Team T N, Contributors J E 2007 Plasma Phys. Control. Fusion 49 B371Google Scholar

    [22]

    Heidbrink W W, Van Zeeland M A, Austin M E, Bierwage A, Chen L, Choi G J, Lauber P, Lin Z, McKee G R, Spong D A 2020 Nuclear Fusion 61 016029Google Scholar

    [23]

    Ishii Y, Azumi M, Kishimoto Y 2002 Phys. Rev. Lett. 89 205002Google Scholar

    [24]

    Wang Z, Wang X, Dong J, Lei Y, Long Y, Mou Z, Qu W 2007 Phys. Rev. Lett. 99 185004Google Scholar

    [25]

    Janvier M, Kishimoto Y, Li J Q 2011 Phys. Rev. Lett. 107 195001Google Scholar

    [26]

    Wang X, Wang X 2017 Nuclear Fusion 57 016039Google Scholar

    [27]

    Zhang W, Ma Z W, Lu X Q, Zhang H W 2020 Nuclear Fusion 60 126022Google Scholar

    [28]

    Porcelli F, Boucher D, Rosenbluth M N 1996 Plasma Phys. Control. Fusion 38 2163Google Scholar

    [29]

    Group I P E 1999 Nuclear Fusion 39 2251Google Scholar

    [30]

    Imbeaux F, Giruzzi G, Maget P, et al. 2006 Phys. Rev. Lett. 96 045004Google Scholar

    [31]

    Maget P, Imbeaux F, Giruzzi G, et al. 2006 Nuclear Fusion 46 797Google Scholar

    [32]

    Maget P, Huysmans G T A, Garbet X, et al. 2007 Phys. Plasmas 14 052509Google Scholar

    [33]

    Wei L, Wang Z X 2014 Phys. Plasmas 21 062505Google Scholar

    [34]

    Wei L, Wang Z X 2014 Nuclear Fusion 54 043015Google Scholar

    [35]

    Zhang W, Ma Z W, Zhu J, Zhang H W 2019 Plasma Phys. Control. Fusion 61 075002Google Scholar

    [36]

    Zhang W, Lin X, Ma Z W, Lu X Q, Zhang H W 2020 Phys. Plasmas 27 122509Google Scholar

    [37]

    Yu Q, Günter S 2022 Nuclear Fusion 62 126056Google Scholar

    [38]

    Kessel C, Manickam J, Rewoldt G, Tang W M 1994 Phys. Rev. Lett. 72 1212Google Scholar

    [39]

    Citrin J, Garcia J, Görler T, Jenko F, Mantica P, Told D, Bourdelle C, Hatch D R, Hogeweij G M D, Johnson T, Pueschel M J, Schneider M 2015 Plasma Phys. Control. Fusion 57 014032Google Scholar

    [40]

    Citrin J, Mantica P 2023 Plasma Phys. Control. Fusion 65 033001Google Scholar

    [41]

    Liu P, Wei X, Lin Z, Brochard G, Choi G J, Heidbrink W W, Nicolau J H, McKee G R 2022 Phys. Rev. Lett. 128 185001Google Scholar

    [42]

    Heidbrink W W, Strait E J, Chu M S, Turnbull A D 1993 Phys. Rev. Lett. 71 855Google Scholar

    [43]

    Turnbull A D, Strait E J, Heidbrink W W, Chu M S, Duong H H, Greene J M, Lao L L, Taylor T S, Thompson S J 1993 Phys. Fluids B 5 2546Google Scholar

    [44]

    Zonca F, Chen L, Santoro R A 1996 Plasma Phys. Control. Fusion 38 2011Google Scholar

    [45]

    Wang X, Zonca F, Chen L 2010 Plasma Phys. Control. Fusion 52 115005Google Scholar

    [46]

    Shi P W, Chen W, Shi Z B, Duan X R, Yang Z C, Ma R R, Zhong W L, Jiang M, Yu L M, Liang A S, Wen J, Yu D L, Liu Y, Yang Q W 2019 Nuclear Fusion 59 066015Google Scholar

    [47]

    Duan S, Fu G Y, Cai H, Li D 2022 Nuclear Fusion 62 056002Google Scholar

    [48]

    Kramer G J, Cheng C Z 2023 Plasma Phys. Control. Fusion 65 015015Google Scholar

    [49]

    Li G, Li Y, Xiao Y 2023 Nuclear Fusion 63 016009Google Scholar

    [50]

    Breizman B N, Sharapov S E 2011 Plasma Phys. Control. Fusion 53 054001Google Scholar

    [51]

    Bass E M, Waltz R E 2013 Phys. Plasmas 20 012508Google Scholar

    [52]

    Fasoli A, Testa D, Sharapov S, Berk H L, Breizman B, Gondhalekar A, Heeter R F, Mantsinen M, contributors to the E J W 2002 Plasma Phys. Control. Fusion 44 B159Google Scholar

    [53]

    Chen W, Yu L, Liu Y, Ding X T, Xie H S, Zhu J, Yu L M, Ji X Q, Li J X, Li Y G, Yu D L, Shi Z B, Song X M, Cao J Y, Song S D, Dong Y B, Zhong W L, Jiang M, Cui Z Y, Huang Y, Zhou Y, Dong J Q, Xu M, Xia F, Yan L W, Yang Q W, Duan X R, HL-2A Team 2014 Nuclear Fusion 54 104002Google Scholar

    [54]

    Kramer G J, Gorelenkov N N, Nazikian R, Cheng C Z 2004 Plasma Phys. Control. Fusion 46 L23Google Scholar

    [55]

    Xu M, Zhong G, Hao B, Shen W, Hu L, Chen W, Qiu Z, Zhang X, Hu Y, Li Y, Zhao H, Liu H, Lyu B, EAST Team 2021 Chin. Phys. Lett. 38 085201Google Scholar

    [56]

    Sharapov S, Alper B, Berk H, Borba D, Breizman B, Challis C, Classen I, Edlund E, Eriksson J, Fasoli A, Fredrickson E, Fu G, Garcia-Munoz M, Gassner T, Ghantous K, Goloborodko V, Gorelenkov N, Gryaznevich M, Hacquin S, Heidbrink W, Hellesen C, Kiptily V, Kramer G, Lauber P, Lilley M, Lisak M, Nabais F, Nazikian R, Nyqvist R, Osakabe M, Thun C P v, Pinches S, Podesta M, Porkolab M, Shinohara K, Schoepf K, Todo Y, Toi K, Zeeland M V, Voitsekhovich I, White R, Yavorskij V, ITPA EP TG and JET-EFDA Contributors 2013 Nuclear Fusion 53 104022Google Scholar

    [57]

    Qi L, Dong J Q, Bierwage A, Lu G, Sheng Z M 2013 Phys. Plasmas 20 032505Google Scholar

    [58]

    Zhong G Q, Hu L Q, Pu N, Zhou R J, Xiao M, Cao H R, Zhu Y B, Li K, Fan T S, Peng X Y, Du T F, Ge L J, Huang J, Xu G S, Wan B N, EAST Team 2016 Rev. Sci. Instrum. 87 11D820Google Scholar

    [59]

    Chen L, Zonca F 2007 Nuclear Fusion 47 S727Google Scholar

    [60]

    Ma R, Chen L, Zonca F, Li Y, Qiu Z 2022 Plasma Phys. Control. Fusion 64 035019Google Scholar

    [61]

    Ma R, Heidbrink W W, Chen L, Zonca F, Qiu Z 2023 Phys. Plasmas 30 042105Google Scholar

    [62]

    Chavdarovski I, Zonca F 2014 Phys. Plasmas 21 052506Google Scholar

    [63]

    Chen L, Zonca F 2017 Phys. Plasmas 24 072511Google Scholar

    [64]

    Yang Y, Gao X, Liu H Q, Li G Q, Zhang T, Zeng L, Liu Y K, Wu M Q, Kong D F, Ming T F, Han X, Wang Y M, Zang Q, Lyu B, Li Y Y, Duan Y M, Zhong F B, Li K, Xu L Q, Gong X Z, Sun Y W, Qian J P, Ding B J, Liu Z X, Liu F K, Hu C D, Xiang N, Liang Y F, Zhang X D, Wan B N, Li J G, Wan Y X, EAST Team 2017 Plasma Phys. Control. Fusion 59 085003Google Scholar

    [65]

    Gao X, Yang Y, Zhang T, Liu H, Li G, Ming T, Liu Z, Wang Y, Zeng L, Han X, Liu Y, Wu M, Qu H, Shen B, Zang Q, Yu Y, Kong D, Gao W, Zhang L, Cai H, Wu X, Hanada K, Zhong F, Liang Y, Hu C, Liu F, Gong X, Xiao B, Wan B, Zhang X, Li J, EAST Team 2017 Nuclear Fusion 57 056021Google Scholar

    [66]

    Chu Y Q, Liu H Q, Zhang S B, Jie Y X, Lian H, Wu M Q, Zhu X, Wu C B, Xu L Q, Wang Y F, Wang S X, Zhang T, Yang Y, Hanada K, Lyu B, Li Y Y, Zang Q 2021 Plasma Phys. Control. Fusion 63 105003Google Scholar

    [67]

    Han X, Liu Y, Zhou T F, Zhang T, Shi T H, Li Y Y, Yuan Y, Mao S T, Jin Y F, Wu X H, Wang S X, Yang Y, Wen F, Huang J, Liu S C, Ye K X, Wu M F, Geng K N, Li G S, Zhong F B, Xiang H M, Gao X, EAST Team 2022 Nuclear Fusion 62 064005Google Scholar

    [68]

    Liu Z X, Ge W L, Wang F, Liu Y J, Yang Y, Wu M Q, Wang Z X, Zhang X X, Li H, Xie J L, Lan T, Mao W, Liu A D, Zhou C, Ding W X, Zhuang G, Liu W D 2020 Nuclear Fusion 60 122001Google Scholar

    [69]

    Zhang B, Gong X, Qian J, Zeng L, Xu L Q, Duan Y M, Zhang J Y, Hu Y C, Jia T Q, Li P, Liang R R, Wang Z H, Zhu X, Wang S X, Ma Q, Ye L, Huang J, Ding R, EAST Team 2022 Nuclear Fusion 62 126064Google Scholar

    [70]

    Ge W, Wang Z X, Wang F, Liu Z, Xu L 2023 Nuclear Fusion 63 016007Google Scholar

    [71]

    Wang S, Cai H, Chen X, Li D 2023 Plasma Phys. Control. Fusion 65 055018Google Scholar

    [72]

    Wu M, Liu Z, Li G, Han X, Zhang T, Li Y, Zhou T, Chao Y, Wang S, Wu X, Geng K, Xiang H, Zhong F, Ye K, Huang J, Zhou Z, Yang S, Wen F, Wang Y, Zhang S, Zhuang G, Gao X, East Team 2023 Nuclear Fusion 63 016008Google Scholar

    [73]

    Wang J, Wang Z X, Wei L, Liu Y 2017 Nuclear Fusion 57 046007Google Scholar

    [74]

    Brower D L, Peebles W A, Luhmann N C, Savage R L 1985 Phys. Rev. Lett. 54 689Google Scholar

    [75]

    Chen W, Yu D L, Ma R R, Shi P W, Li Y Y, Shi Z B, Du H R, Ji X Q, Jiang M, Yu L M, Yuan B S, Li Y G, Yang Z C, Zhong W L, Qiu Z Y, Ding X T, Dong J Q, Wang Z X, Wei H L, Cao J Y, Song S D, Song X M, Yi L, Yang Q W, Xu M, Duan X R 2018 Nuclear Fusion 58 056004Google Scholar

    [76]

    Du X D, Hong R J, Heidbrink W W, et al. 2021 Phys. Rev. Lett. 127 025001Google Scholar

  • [1] 朱霄龙, 陈伟, 王丰, 王正汹. 托卡马克中低频磁流体不稳定性协同作用引起快粒子输运的混合模拟研究. 物理学报, 2023, 72(21): 215210. doi: 10.7498/aps.72.20230620
    [2] 侯玉梅, 陈伟, 邹云鹏, 于利明, 石中兵, 段旭如. HL-2A装置高能量离子驱动的比压阿尔芬本征模的扫频行为. 物理学报, 2023, 72(21): 215211. doi: 10.7498/aps.72.20230726
    [3] 邹云鹏, 陈锡熊, 陈伟. 临界梯度模型的优化及集成模拟中高能量粒子模块的搭建. 物理学报, 2023, 72(21): 215206. doi: 10.7498/aps.72.20230681
    [4] 包健, 张文禄, 李定. 高能量电子激发比压阿尔芬本征模的全域模拟研究. 物理学报, 2023, 72(21): 215216. doi: 10.7498/aps.72.20230794
    [5] 刘泰齐, 陈少永, 牟茂淋, 唐昌建. 超电阻对气球模线性不稳定性影响的理论研究. 物理学报, 2023, 72(14): 145201. doi: 10.7498/aps.72.20230308
    [6] 沈勇, 董家齐, 何宏达, 丁玄同, 石中兵, 季小全, 李佳, 韩明昆, 吴娜, 蒋敏, 王硕, 李继全, 许敏, 段旭如. 中国环流器2号A托卡马克弹丸注入放电中空电流与反磁剪切位形. 物理学报, 2021, 70(18): 185201. doi: 10.7498/aps.70.20210641
    [7] 毕海亮, 魏来, 范冬梅, 郑殊, 王正汹. 旋转圆柱等离子体中撕裂模和Kelvin-Helmholtz不稳定性的激发特性. 物理学报, 2016, 65(22): 225201. doi: 10.7498/aps.65.225201
    [8] 王军, 胡纯栋, 胡双辉, 吴斌, 丁斯晔, 王进芳. 中性束注入在EAST中激发的离散阿尔文不稳定性. 物理学报, 2013, 62(3): 035201. doi: 10.7498/aps.62.035201
    [9] 郑殊, 张甲鹏, 段萍, 魏来, 王先驱. 黏滞等离子体中双撕裂模不稳定性的数值模拟研究. 物理学报, 2013, 62(2): 025205. doi: 10.7498/aps.62.025205
    [10] 简广德, 董家齐. 托卡马克等离子体中动力剪切阿尔芬波不稳定性的数值研究. 物理学报, 2005, 54(4): 1641-1647. doi: 10.7498/aps.54.1641
    [11] 魏新华, 周国成, 曹晋滨, 李柳元. 无碰撞电流片低频电磁模不稳定性:MHD模型. 物理学报, 2005, 54(7): 3228-3235. doi: 10.7498/aps.54.3228
    [12] 张介秋, 梁昌洪, 王耕国, 朱家珍. 阿尔芬高斯波包演化为阿尔芬孤波的条件及阿尔芬波的调制不稳定性判据. 物理学报, 2003, 52(4): 890-895. doi: 10.7498/aps.52.890
    [13] 李文飞, 张丰收. 非对称核物质的化学不稳定性与力学不稳定性. 物理学报, 2001, 50(10): 1888-1895. doi: 10.7498/aps.50.1888
    [14] 黄朝松, 李钧. 等离子体交换不稳定性的模耦合理论. 物理学报, 1992, 41(5): 783-791. doi: 10.7498/aps.41.783
    [15] 卞伯达, 林景, 郭世宠, 蔡诗东. 弱相对论捕获电子哨声模不稳定性. 物理学报, 1990, 39(2): 218-224. doi: 10.7498/aps.39.218
    [16] 徐学桥, 霍裕平. 托卡马克中宏观束-等离子体扭曲模不稳定性研究. 物理学报, 1986, 35(10): 1259-1270. doi: 10.7498/aps.35.1259
    [17] 顾永年. 小环径比锐边界等离子体的扭曲模不稳定性. 物理学报, 1984, 33(4): 554-560. doi: 10.7498/aps.33.554
    [18] 吴汉明, 潘良儒. 用变分法近似计算椭球马克中的倾斜模不稳定性. 物理学报, 1984, 33(8): 1100-1111. doi: 10.7498/aps.33.1100
    [19] 夏蒙棼, 周如玲. 逃逸电子不稳定性. 物理学报, 1980, 29(6): 788-793. doi: 10.7498/aps.29.788
    [20] 周玉美, 蔡诗东. 磁化等离子体里高频模和低频模耦合的参量不稳定性. 物理学报, 1980, 29(7): 916-926. doi: 10.7498/aps.29.916
计量
  • 文章访问数:  2563
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-04
  • 修回日期:  2023-06-05
  • 上网日期:  2023-07-18
  • 刊出日期:  2023-11-05

/

返回文章
返回