搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

EXL-50U球形环中快离子磁场波纹损失的优化模拟研究

郝保龙 李颖颖 陈伟 郝广周 顾翔 孙恬恬 王嵎民 董家齐 袁保山 彭元凯 石跃江 谢华生 刘敏胜 ENN TEAM

引用本文:
Citation:

EXL-50U球形环中快离子磁场波纹损失的优化模拟研究

郝保龙, 李颖颖, 陈伟, 郝广周, 顾翔, 孙恬恬, 王嵎民, 董家齐, 袁保山, 彭元凯, 石跃江, 谢华生, 刘敏胜, ENN TEAM

Optimizing numerical simulation of beam ion loss due to toroidal field ripple on EXL-50U spherical torus

Hao Bao-Long, Li Ying-Ying, Chen Wei, Hao Guang-Zhou, Gu Xiang, Sun Tian-Tian, Wang Yu-Min, Dong Jia-Qi, Yuan Bao-Shan, Peng Yuan-Kai, Shi Yue-Jiang, Xie Hua-Sheng, Liu Min-Sheng, ENN TEAM
PDF
HTML
导出引用
  • EXL-50U装置高参数等离子体的实现对中性束注入(NBI)加热的依赖非常敏感, 期望NBI快离子约束良好并通过碰撞慢化把能量传给背景等离子体. 本文基于集成模拟给出的平衡位形、快离子分布和装置波纹度数据对快离子波纹损失开展了模拟研究. 发现快离子波纹损份额约为37%, 局域热斑约 0.6 MW/m2, 对装置实验运行来说不可接受. 其优化方案包括移动等离子体位置和加FI(铁素体钢插件)降低波纹度, 增大 Ip (等离子体电流)以及优化 NBI 角度. 结果显示必须控制波纹度分布且增大 Ip 到 600 kA 以上, 才能使快离子损失降低到 3%—4%, 局域热斑降低一个量级. 本文总结了装置设计时快离子波纹损失评估的方法, 包括相空间快离子分布和波纹损失区重合度, 全要素慢化时间尺度粒子跟踪. 还总结了降低波纹损失的工程和物理途径, 为集成模拟迭代优化和装置运行提供模拟支持.
    Realization of high performance plasma of EXL-50U is very sensitive to NBI (neutral beam injection) heating, and it is expected that the fast ions of NBI are confined well and their energy is transferred to the background plasma by collision moderating. In this paper, the loss of fast ion ripple is simulated based on the equilibrium configuration, fast ion distribution and device waviness data given by the integrated simulation. It is found that the loss fraction of fast ion ripple is about 37%, and the local hot spot is about 0.6 MW/m2, which is unacceptable for the experimental operation of the device. The optimization method includes moving the plasma position and adding FI (ferritic steel plug-in) to reduce the ripple degree, increasing the Ip (plasma current) and optimizing the NBI injection angle. The results show that the ripple distribution must be controlled and the Ip must be increased to more than 600 kA, so that the fast ion loss can be reduced to 3%–4% and the local heat spot can be reduced by an order of magnitude. In this paper, the evaluation methods of fast ion ripple loss in device design are summarized, including the fast ion distribution in phase space, the overlap degree of ripple loss area, and the particle tracking on the time scale of total factor slowing down. The engineering and physical ways to reduce ripple loss are also summarized to provide simulation support for integrated simulation iterative optimization and plant operation.
      通信作者: 李颖颖, liyingyinge@enn.cn
    • 基金项目: 国家磁约束核聚变能发展研究专项(批准号: 2019YFE03020000)、河北省高端人才计划 (批准号: 2021HBQZYCSB006)和国家自然科学基金(批准号: 11905142)资助的课题.
      Corresponding author: Li Ying-Ying, liyingyinge@enn.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2019YFE03020000), the Talent Program of Hebei Province, China (Grant No. 2021HBQZYCSB006), and the National Natural Science Foundation of China (Grant No. 11905142).
    [1]

    Chen J L, Jian X, Chan V S, Li Z Y, Deng Z, Li G Q, Guo W F, Shi N, Chen X, CFETR Physics Team 2017 Plasma Phys. Control. Fusion 59 075005Google Scholar

    [2]

    Gorelenkov N N, Pinches S D, Toi K 2014 Nucl. Fusion 54 125001Google Scholar

    [3]

    郝保龙, 陈伟, 蔡辉山, 李国强, 王丰, 吴斌, 王进芳, 陈佳乐, 王兆亮, 高翔, Chan Vincent, CFETR TEAM 2020 中国科学:物理学 力学 天文学 50 065201Google Scholar

    Hao B L, Chen W, Cai H S, Li G Q, Wang F, Wu B, Wang J F, Chen J L, Wang Z L, Gao X, Chan V, CFETR TEAM 2020 Sci. Sin. -Phys. Mech. Astron. 50 065201Google Scholar

    [4]

    Wu B, Hao B L, White R B, Wang J F, Zang Q, Han X F, Hu C D 2017 Plasma Phys. Control. Fusion 59 025004Google Scholar

    [5]

    Podesta M, Gorelenkova M, Gorelenkov N N, White R B 2017 Plasma Phys. Control. Fusion 59 095008Google Scholar

    [6]

    Taimourzadeh S, Bass E M, Chen Y, Collins C, Gorelenkov N N, Könies A, Lu Z X, Spong D A, Todo Y, Austin M E, Bao J, Biancalani A, Borchardt M, Bottino A, Heidbrink W W, Kleiber R, Lin Z, Mishchenko A, Shi L, Varela J, Waltz R E, Yu G, Zhang W L, Zhu Y 2019 Nucl. Fusion 59 066006Google Scholar

    [7]

    Duarte V N, Lestz J B, Gorelenkov N N, White R B 2023 Phys. Rev. Lett. 130 105101Google Scholar

    [8]

    Pankin A, McCune D, Andre R, Bateman G, Kritz A 2004 Comput. Phys. Commun. 159 157Google Scholar

    [9]

    White R B, Rutherford P H, Colestock P, Bussac M N 1988 Phys. Rev. Lett. 60 2038Google Scholar

    [10]

    White R B 2014 The Theory of Toroidally Confined Plasmas (3rd Ed.) (Singapore: World Scientific Publishing Company

    [11]

    White R B, Boozer A H, Hay R 1982 Phys. Fluids 25 575Google Scholar

    [12]

    Redi M H, White R B, Batha S H, Levinton F M, McCune D C 1997 Phys. Plasmas 4 4001Google Scholar

    [13]

    Redi M H, Zarnstorff M C, White R B, Budny R V, Janos A C, Owens D K, Schivell J F, Scott S D, Zweben S J 1995 Nucl. Fusion 35 1191Google Scholar

    [14]

    Redi M H, Budny R V, McCune D C, Miller C O, White R B 1996 Phys. Plasmas 3 3037Google Scholar

    [15]

    郝保龙, 陈伟, 李国强, 王晓静, 王兆亮, 吴斌, 臧庆, 揭银先, 林晓东, 高翔, CFETR Team 2021 物理学报 70 115201Google Scholar

    Hao B L, Chen W, Li G Q, Wang X J, Wang Z L, Wu B, Zang Q, Jie Y X, Lin X D, Gao X, CFETR Team 2021 Acta Phys. Sin. 70 115201Google Scholar

    [16]

    Wesson J Tokamaks 2011 (New York: Oxford University Press

    [17]

    Hao B L, White R B, Gao X, Li G Q, Chen W, Wang X J, Wu B, Wu M Q, Zhu X, Lin X D, Jie Y X, Zang Q, Li J G, Wan Y X, CFETR Physics Team 2021 Nucl. Fusion 61 046035Google Scholar

    [18]

    Boozer A H, Kuo-Petravic G, 1981 Phys. Fluids 24 851Google Scholar

    [19]

    Kramer G J, McLean A, Brooks N, Budny R V, Chen X, Heidbrink W W, Kurki-Suonio T, Nazikian R, Koskela T, Schaffer M J, Shinohara K, Snipes J A, Van Zeeland M A 2013 Nucl. Fusion 53 123018Google Scholar

    [20]

    ITER Physics Expert Group on Energetic Particles, Heating and Current Drive and ITER Physics Basis Editors 1999 Nucl. Fusion 39 2495Google Scholar

    [21]

    Tobita K, Nakayama T, Konovalov S V, Sato M 2003 Plasma Phys. Control. Fusion 45 133Google Scholar

    [22]

    Pinches S D, Chapman I T, Lauber P W, Oliver H J C, Sharapov S E, Shinohara K, Tani K 2015 Phys. Plasmas 22 021807Google Scholar

  • 图 1  EXL-50U集成模拟设计中背景电子密度ne、温度Te和离子温度分布Ti

    Fig. 1.  Distribution of bulk electron density ne, electron temperature Te and bulk ion temperature Ti in EXL-50U integrated modeling.

    图 2  EXL-50U纵场波纹度分布 (a) 解析函数实现值; (b) 工程设计值

    Fig. 2.  Distribution of toroidal field ripple perturbation amplitude in EXL-50U: (a) Ripple data by analytical equation; (b) engineering data in design.

    图 4  EXL-50U装置波纹度不同R截面工程数据和数值拟合结果对比 (a) R = 0.5 m; (b) R = 0.7 m; (c) R = 0.9 m; (d) R = 1.1 m

    Fig. 4.  Ripple comparison between engineering design and fitting curve in different R plane of EXL-50U: (a) R = 0.5 m; (b) R = 0.7 m; (c) R = 0.9 m; (d) R = 1.1 m.

    图 3  EXL-50U装置波纹度不同Z截面工程数据和数值拟合结果对比 (a) Z = 0 m; (b) Z = 0.3 m; (c) Z = 0.6 m; (d) Z = 0.9 m

    Fig. 3.  Ripple comparison between engineering design and fitting curve in different Z plane of EXL-50U: (a) Z = 0 m; (b) Z = 0.3 m; (c) Z = 0.6 m; (d) Z = 0.9 m.

    图 5  EXL-50U上NBI快离子初始分布的粒子空间位置俯视图(a)和极向投影(b)

    Fig. 5.  Initial distribution of beam ions in EXL-50U: (a) Bird’s view; (b) poloidal cross section.

    图 6  Orbit程序中读入的NBI快离子初始分布函数 (a) RZ空间分布; (b)粒子密度的极向磁通分布; (c)能量分布; (d) pitch角分布

    Fig. 6.  Initial distribution of NBI fast ions read by Orbit code: (a) Particle location in RZ coordinate; (b) particle density distribution in poloidal flux; (c) energy distribution; (d) pitch angle distribution.

    图 7  EXL-50U集成模拟中使用的平衡位形和波纹场重建后的波纹损失区 (a) Boozer坐标系磁面; (b)波纹磁阱俘获损失区, 香蕉粒子转折点位于此区即损失; (c)无碰撞波纹随机扩散损失区, GWB判据

    Fig. 7.  Equilibrium and ripple loss region in EXL-50U integrated modeling: (a) Magnetic flux surface in Boozer coordinate; (b) ripple well loss region, where banana tips in here will lost; (c) collisionless ripple stochastic diffusion region, plot with GWB criterion.

    图 8  (a) 初始能量固定时, 在($ {P_\zeta }, {{\mu {B_0}} \mathord{\left/ {\vphantom {{\mu {B_0}} E}} \right. } E} $)平面NBI快离子相空间的轨道类型分布; (b) 波纹损失区(随机波纹扩散GWB判据); (c) co-tang (较切向)的NBI快离子初始分布; (d) co-perp (较垂直) 的NBI快离子初始分布

    Fig. 8.  (a) Orbit classification in the plane of ($ {P_\zeta }, {{\mu {B_0}} \mathord{\left/ {\vphantom {{\mu {B_0}} E}} \right. } E} $) with fixed initial energy of NBI fast ions; (b) region of stochastic ripple diffusion by GWB criterion; (c) co-tang initial NBI fast ion distribution; (d) co-perp initial NBI fast ion distribution.

    图 9  一个慢化时间后NBI快离子分布信息 (a) RZ空间分布; (b)径向坐标统计; (c)末态粒子能量; (d) pitch角统计

    Fig. 9.  NBI fast ions distribution after one slowing down time calculation: (a) Particle location in RZ coordinate; (b) poloidal flux distribution; (c) particle energy in final time; (d) pitch angle distribution in final time.

    图 10  Co-perp快离子分布下的(a)损失粒子极向位置分布, (b)损失时间和能量记录, (c)损失份额的随时演化

    Fig. 10.  (a) Poloidal distribution of lost particle, (b) lost time and energy record, (c) time evolution of loss fraction for co-perp beam ion distribution.

    图 11  一个慢化时间后损失的NBI快离子局域沉积在LCFS处得到的热负荷

    Fig. 11.  Heat load at the last closed flux surface due to NBI fast ions loss after a slowing down time.

    图 12  LCFS的Rmax移动到1.32 m时的波纹损失区(GWB判据) (a) RZ平面; (b) ($ {P_\zeta }, {{\mu {B_0}} \mathord{\left/ {\vphantom {{\mu {B_0}} E}} \right. } E} $)平面

    Fig. 12.  The GWB stochastic ripple diffusion regime: (a) RZ poloidal cross section; (b) in the plane of ($ {P_\zeta }, {{\mu {B_0}} \mathord{\left/ {\vphantom {{\mu {B_0}} E}} \right. } E} $).

    图 13  500 kA平衡位形LCFS Rmax~1.16时的(a), (c)波纹磁阱区和(b), (d)随机波纹扩散区 (a), (b)单独TF波纹场; (c), (d) TF+FI波纹场

    Fig. 13.  Ripple well regime (a), (c) and stochastic ripple diffusion regime (b), (d) in 500 kA, Rmax~1.16 m equilibrium: (a), (b) TF ripple; (c), (d) TF+FI ripple.

    图 14  不同NBI注入角度下的NBI沉积路径的极向截面 (a)切向半径Rtang = 0.8 m, 离子源垂直中平面抬升Zelev = 0 m; (b)切向半径Rtang = 1.0 m, 离子源垂直中平面抬升Zelev = 0.6 m

    Fig. 14.  Cross section of NBI deposition trajectory with different NBI geometry: (a) Beam tangency radius Rtang = 0.8 m, elevation of beam ion source above midplane Zelev = 0 m; (b) beam tangency radius Rtang = 1.0 m, elevation of beam ion source above midplane Zelev = 0.6 m.

    表 1  EXL-50U与其他托卡马克装置主机参数对比

    Table 1.  Main parameters comparison of EXL-50U and other tokomak facilities.

    参数 CFETR ITER HL-2M EAST EXL-50U
    磁轴场强
    $ {B_{T0}} $/T
    6.5 5.3 3 2 0.6–0.8
    等离子体大
    半径$ {R_0} $/m
    7.2 6.2 1.78 1.9 0.9
    等离子体小
    半径a/m
    2.2 2.0 0.62 0.5 0.45
    等离子体电流
    $ {I_{\text{p}}} $/MA
    14 15 3 1 0.5–1
    纵场磁体
    柄数 N
    16 18 20 16 12
    下载: 导出CSV

    表 2  EXL-50U与其他托卡马克装置纵场波纹数据拟合结果对比

    Table 2.  Ripple field fitting parameters comparison of EXL-50U and other tokomak facilities.

    Item CFETR ITER EAST EXL-50U
    $ {\delta _0} $ 1.57 × 10–5 3.75 × 10–6 1.26 × 10–4 4.19 × 10–8
    R0 = a + bZ 2 (m) 6 + 0.062Z 2 6.75 – 0.034 Z 2 1.71 – 0.18 Z 2 1.77 × 10–3 + 0.106 Z 2
    brip 0.021 0.26 0.26 0.297
    wrip/m 0.63 0.53 0.15 0.1034
    下载: 导出CSV

    表 3  基于集成模拟平衡位形和快离子分布的波纹损失全要素计算结果

    Table 3.  Ripple loss results of full calculation based on integrated modeling equilibrium and beam ion distribution.

    Trapped fraction/% Prompt loss/% Non-prompt loss/% Total loss/%
    Co-perp 39 3.3 33.7 37
    Co-tang 33 0.8 32.2 34
    下载: 导出CSV

    表 4  EXL-50U中固定 Ip = 500 kA, 不同Rmax时波纹损失计算结果

    Table 4.  Ripple loss results of different Rmax of LCFS equilibrium with Ip = 500 kA in EXL-50U.

    Trapped fraction/%Total loss/%
    Rmax =1.323 m53.730.5
    Rmax =1.298 m52.528.4
    Rmax =1.163 m45.820.8
    下载: 导出CSV

    表 5  不同NBI角度下的快离子分布中的捕获粒子份额

    Table 5.  Trapped particle faction of beam ions with different NBI geometry.

    Trapped fraction Zelev/m
    0 0.2 0.4 0.6
    Rtang = 0.407 m 0.37 0.385 0.39 0.39
    Rtang = 0.607 m 0.30 0.30 0.295 0.305
    Rtang = 0.807 m 0.255 0.245 0.245 0.25
    Rtang = 1.007 m 0.295 0.285 0.27 0.27
    下载: 导出CSV

    表 6  平衡位形LCFS Rmax ~1.16 m, Ip = 500 kA时不同NBI角度和束能Enb下的快离子损失份额

    Table 6.  Loss faction of NBI fast ions with different NBI geometry and beam energy in LCFS Rmax~1.16 m, Ip = 500 kA equilibrium.

    Total lossEnb/keV
    20253035404550
    R = 0.428 m0.19880.21570.23190.24330.25880.26870.2766
    R = 0.607 m0.1250.12860.13430.14320.14550.150.1547
    R = 0.807 m0.11480.11790.11970.12140.1250.12930.127
    下载: 导出CSV

    表 7  不同Ip下的NBI快离子损失粒子份额

    Table 7.  Trapped particle faction of NBI fast ions with different Ip.

    Plasma current Ip/kATrapped fraction/%Prompt loss/%Total loss/%
    50046.54.220
    60038.23.612.4
    70038.61.99.4
    800391.097.8
    100043.40.437.7
    下载: 导出CSV
  • [1]

    Chen J L, Jian X, Chan V S, Li Z Y, Deng Z, Li G Q, Guo W F, Shi N, Chen X, CFETR Physics Team 2017 Plasma Phys. Control. Fusion 59 075005Google Scholar

    [2]

    Gorelenkov N N, Pinches S D, Toi K 2014 Nucl. Fusion 54 125001Google Scholar

    [3]

    郝保龙, 陈伟, 蔡辉山, 李国强, 王丰, 吴斌, 王进芳, 陈佳乐, 王兆亮, 高翔, Chan Vincent, CFETR TEAM 2020 中国科学:物理学 力学 天文学 50 065201Google Scholar

    Hao B L, Chen W, Cai H S, Li G Q, Wang F, Wu B, Wang J F, Chen J L, Wang Z L, Gao X, Chan V, CFETR TEAM 2020 Sci. Sin. -Phys. Mech. Astron. 50 065201Google Scholar

    [4]

    Wu B, Hao B L, White R B, Wang J F, Zang Q, Han X F, Hu C D 2017 Plasma Phys. Control. Fusion 59 025004Google Scholar

    [5]

    Podesta M, Gorelenkova M, Gorelenkov N N, White R B 2017 Plasma Phys. Control. Fusion 59 095008Google Scholar

    [6]

    Taimourzadeh S, Bass E M, Chen Y, Collins C, Gorelenkov N N, Könies A, Lu Z X, Spong D A, Todo Y, Austin M E, Bao J, Biancalani A, Borchardt M, Bottino A, Heidbrink W W, Kleiber R, Lin Z, Mishchenko A, Shi L, Varela J, Waltz R E, Yu G, Zhang W L, Zhu Y 2019 Nucl. Fusion 59 066006Google Scholar

    [7]

    Duarte V N, Lestz J B, Gorelenkov N N, White R B 2023 Phys. Rev. Lett. 130 105101Google Scholar

    [8]

    Pankin A, McCune D, Andre R, Bateman G, Kritz A 2004 Comput. Phys. Commun. 159 157Google Scholar

    [9]

    White R B, Rutherford P H, Colestock P, Bussac M N 1988 Phys. Rev. Lett. 60 2038Google Scholar

    [10]

    White R B 2014 The Theory of Toroidally Confined Plasmas (3rd Ed.) (Singapore: World Scientific Publishing Company

    [11]

    White R B, Boozer A H, Hay R 1982 Phys. Fluids 25 575Google Scholar

    [12]

    Redi M H, White R B, Batha S H, Levinton F M, McCune D C 1997 Phys. Plasmas 4 4001Google Scholar

    [13]

    Redi M H, Zarnstorff M C, White R B, Budny R V, Janos A C, Owens D K, Schivell J F, Scott S D, Zweben S J 1995 Nucl. Fusion 35 1191Google Scholar

    [14]

    Redi M H, Budny R V, McCune D C, Miller C O, White R B 1996 Phys. Plasmas 3 3037Google Scholar

    [15]

    郝保龙, 陈伟, 李国强, 王晓静, 王兆亮, 吴斌, 臧庆, 揭银先, 林晓东, 高翔, CFETR Team 2021 物理学报 70 115201Google Scholar

    Hao B L, Chen W, Li G Q, Wang X J, Wang Z L, Wu B, Zang Q, Jie Y X, Lin X D, Gao X, CFETR Team 2021 Acta Phys. Sin. 70 115201Google Scholar

    [16]

    Wesson J Tokamaks 2011 (New York: Oxford University Press

    [17]

    Hao B L, White R B, Gao X, Li G Q, Chen W, Wang X J, Wu B, Wu M Q, Zhu X, Lin X D, Jie Y X, Zang Q, Li J G, Wan Y X, CFETR Physics Team 2021 Nucl. Fusion 61 046035Google Scholar

    [18]

    Boozer A H, Kuo-Petravic G, 1981 Phys. Fluids 24 851Google Scholar

    [19]

    Kramer G J, McLean A, Brooks N, Budny R V, Chen X, Heidbrink W W, Kurki-Suonio T, Nazikian R, Koskela T, Schaffer M J, Shinohara K, Snipes J A, Van Zeeland M A 2013 Nucl. Fusion 53 123018Google Scholar

    [20]

    ITER Physics Expert Group on Energetic Particles, Heating and Current Drive and ITER Physics Basis Editors 1999 Nucl. Fusion 39 2495Google Scholar

    [21]

    Tobita K, Nakayama T, Konovalov S V, Sato M 2003 Plasma Phys. Control. Fusion 45 133Google Scholar

    [22]

    Pinches S D, Chapman I T, Lauber P W, Oliver H J C, Sharapov S E, Shinohara K, Tani K 2015 Phys. Plasmas 22 021807Google Scholar

  • [1] 李正吉, 陈伟, 孙爱萍, 于利明, 王卓, 陈佳乐, 许健强, 李继全, 石中兵, 蒋敏, 李永高, 何小雪, 杨曾辰, 李鉴. HL-2A装置高βN双输运垒实验的集成分析. 物理学报, 2024, 73(6): 065202. doi: 10.7498/aps.73.20231543
    [2] 孙有文, 仇志勇, 万宝年. 磁约束燃烧等离子体物理的现状与展望. 物理学报, 2024, 73(17): 175202. doi: 10.7498/aps.73.20240831
    [3] 颜筱宇, 何小斐, 于利明, 刘亮, 陈伟, 石中兵, 卢杰, 魏会领, 韩纪锋, 张轶泼, 钟武律, 许敏. HL-2A装置上成像型中性粒子分析器的物理设计和初步实验结果. 物理学报, 2023, 72(21): 215212. doi: 10.7498/aps.72.20230768
    [4] 罗一鸣, 王占辉, 陈佳乐, 吴雪科, 付彩龙, 何小雪, 刘亮, 杨曾辰, 李永高, 高金明, 杜华荣, 昆仑集成模拟设计组. HL-2A上NBI加热H模实验的集成模拟分析. 物理学报, 2022, 71(7): 075201. doi: 10.7498/aps.71.20211941
    [5] 郝保龙, 陈伟, 李国强, 王晓静, 王兆亮, 吴斌, 臧庆, 揭银先, 林晓东, 高翔, CFETRTEAM. 中国聚变工程试验堆上新经典撕裂模和纵场波纹扰动叠加效应对alpha粒子损失影响的数值模拟. 物理学报, 2021, 70(11): 115201. doi: 10.7498/aps.70.20201972
    [6] 尚玲玲, 钱轩, 孙天娇, 姬扬. 超快光脉冲照射GaAs晶体产生的干涉环. 物理学报, 2020, 69(21): 214202. doi: 10.7498/aps.69.20201055
    [7] 陈建玲, 王辉, 贾焕玉, 马紫微, 李永宏, 谭俊. 超强磁场下中子星壳层的电导率和磁星环向磁场欧姆衰变. 物理学报, 2019, 68(18): 180401. doi: 10.7498/aps.68.20190760
    [8] 唐熊忻, 邱基斯, 樊仲维, 王昊成, 刘悦亮, 刘昊, 苏良碧. 用于惯性约束核聚变激光驱动器的激光二极管抽运Nd,Y:CaF2激光放大器的实验研究. 物理学报, 2016, 65(20): 204206. doi: 10.7498/aps.65.204206
    [9] 李丞, 高勋, 刘潞, 林景全. 磁场约束下激光诱导等离子体光谱强度演化研究. 物理学报, 2014, 63(14): 145203. doi: 10.7498/aps.63.145203
    [10] 杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真. 东方超环托卡马克高约束模式边界等离子体输运数值模拟研究. 物理学报, 2013, 62(24): 245206. doi: 10.7498/aps.62.245206
    [11] 晏骥, 江少恩, 苏明, 巫顺超, 林稚伟. X射线相衬成像应用于惯性约束核聚变多层球壳靶丸检测. 物理学报, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [12] 曹柱荣, 张海鹰, 董建军, 袁铮, 缪文勇, 刘慎业, 江少恩, 丁永坤. 高动态范围激光等离子体诊断系统及其在惯性约束聚变实验中的应用. 物理学报, 2011, 60(4): 045212. doi: 10.7498/aps.60.045212
    [13] 张 杰, 罗家融, 王少杰. 中型tokamak中快离子的约束. 物理学报, 2006, 55(3): 1077-1082. doi: 10.7498/aps.55.1077
    [14] 刘新元, 谢飞翔, 王福仁, 马 平, 戴远东. 多结超导环在外磁场中的行为. 物理学报, 2003, 52(2): 473-477. doi: 10.7498/aps.52.473
    [15] 王铁山, 落合谦太郎, 丸田胜彦, 饭田敏行, 高桥亮人. 低能氘团簇离子(d+3)诱发固体靶内D-D核聚变过程中的团簇效应研究. 物理学报, 1998, 47(12): 1957-1962. doi: 10.7498/aps.47.1957
    [16] 孟月东, 高翔, 范叔平, 李建刚, 罗家融, 童兴德, 张卫, 韩玉琴, 龚先祖, 蒋家广, 尹富先, 曾磊, 凌必利, 殷飞, 丁涟城, 张守银, 吴志勇, 吴明军. 利用环向电场提升等离子体电流以改善约束状态. 物理学报, 1994, 43(9): 1486-1494. doi: 10.7498/aps.43.1486
    [17] 吴汉明. 自约束球形等离子体的平衡与稳定性. 物理学报, 1989, 38(11): 1833-1837. doi: 10.7498/aps.38.1833
    [18] 罗正明, 滕礼坚. 快粒子在聚变等离子体中的慢化及能量增益研究. 物理学报, 1982, 31(9): 1166-1175. doi: 10.7498/aps.31.1166
    [19] 俞国扬, 陈俊本, 霍裕平. 大型环电流器的磁场设计. 物理学报, 1979, 28(5): 114-123. doi: 10.7498/aps.28.114
    [20] 林中衡;殷光裕. 激光核聚变模拟计算. 物理学报, 1979, 28(4): 455-469. doi: 10.7498/aps.28.455
计量
  • 文章访问数:  2189
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-08
  • 修回日期:  2023-08-03
  • 上网日期:  2023-09-09
  • 刊出日期:  2023-11-05

/

返回文章
返回