搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HL-2A装置上成像型中性粒子分析器的物理设计和初步实验结果

颜筱宇 何小斐 于利明 刘亮 陈伟 石中兵 卢杰 魏会领 韩纪锋 张轶泼 钟武律 许敏

引用本文:
Citation:

HL-2A装置上成像型中性粒子分析器的物理设计和初步实验结果

颜筱宇, 何小斐, 于利明, 刘亮, 陈伟, 石中兵, 卢杰, 魏会领, 韩纪锋, 张轶泼, 钟武律, 许敏

Physical design and primary experimental results of imaging neutral particle analyzer on HL-2A tokamak

Yan Xiao-Yu, He Xiao-Fei, Yu Li-Ming, Liu Liang, Chen Wei, Shi Zhong-Bing, Lu Jie, Wei Hui-Ling, Han Ji-Feng, Zhang Yi-Po, Zhong Wu-Lü, Xu Min
PDF
HTML
导出引用
  • 在HL-2A装置上发展了基于硫化锌银闪烁体的成像型中性粒子分析器, 对磁约束聚变等离子体中高能量粒子(EP)的分布、能量和螺距角等关键信息, 以及EP与磁流体不稳定性之间的相互作用等物理问题进行了研究. 在中性束注入路径上逃逸出的具有等离子体中快离子能量和螺距角信息的中性粒子, 通过由入射孔和碳微晶体膜片组成的准直系统后转化为离子, 在装置边缘磁场中受洛伦兹力偏转而撞击到闪烁体屏上. 通过分析发光点的位置和光强度, 可以推断出装置中快离子的位置、能量和螺距角等关键信息. 在HL-2A装置高能量粒子物理实验中, 通过该诊断和理论计算初步证实了长寿模不稳定性是由能量、螺距角和位置分别为E = 12.5—32 keV, $\theta \sim$149.2° ($v_{//}/v\sim$0.86)和R = 170.5—171.5 cm的芯部快离子激发.
    The imaging neutral particle analyzer (INPA) based on scintillator (ZnS(Ag)) is designed and used on HL-2A tokamak to investigate the distribution of energetic particles (EPs) and even their interactions with magnetohydrodynamic instabilities. The collimation system is composed of a pinhole of 3 mm in diameter and six circular carbon microcrystal diaphragms each with a thickness of 10 nm. The neutral particles escape from six definite positions in the neutral beam injection path and pass through the collimator system at a certain pitch angle, and the neutral particles become fast ions after passing through the carbon microcrystal diaphragm. The fast ions will hit the scintillator after a 180° deflection by the edge magnetic field. The energy, pitch angle and birthplace can be calculated by the position and light intensity of the impact spots. The images of impact spots caused by long-lived mode are recorded by a high-speed camera through the fiber optic bundle. The long-lived mode instabilities approve to be excited by the core EPs with energy value in a range of $E\sim $12.5-32 keV, pitch angle of $v_{//}/v\sim$0.86, and the birthplace in a range of $R\sim $170.5-171.5 cm.
      通信作者: 于利明, yulm@swip.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFE03020000, 2018YFE0304100)、四川省科技计划(批准号: 2022NSFSC1823, 2022ZYD0019)和核工业西南物理研究院西物创新行动人才项目(批准号: 202103XWCXRC003)资助的课题.
      Corresponding author: Yu Li-Ming, yulm@swip.ac.cn
    • Funds: Project supported by the the National Key R&D Program of China (Grant Nos. 2019YFE03020000, 2018YFE0304100), the Science and Technology Program of Sichuan Province, China (Grant Nos. 2022NSFSC1823, 2022ZYD0019), and the Innovation Program of SWIP, China (Grant No. 202103XWCXRC003).
    [1]

    Heidbrink W W 2002 Phys. Plasmas 9 2113Google Scholar

    [2]

    Chen L, Zonca F 2016 Rev. Mod. Phys. 88 015008Google Scholar

    [3]

    Ding X T, Chen W 2018 Plasma Sci. Technol. 20 094008Google Scholar

    [4]

    Shi P W, Chen W, Duan X R 2021 Chin. Phys. Lett 38 035202Google Scholar

    [5]

    Chen W, Wang Z X 2020 Chin. Phys. Lett. 37 125001Google Scholar

    [6]

    Fasoli A, Gormenzano C, Berk H L, Breizman B, Briguglio S, Darrow D S, Gorelenkov N, Heidbrink W W, Jaun A, Konovalov S V 2007 Nucl. Fusion 47 S264Google Scholar

    [7]

    Afanasyev V I, Chernyshev F V, Kozlovsky S S, et al. 2022 JINST 17 C07001Google Scholar

    [8]

    Kocan M, Garcia-Munoz M, Ayllon-Guerola J, et al. 2017 JINST 12 C12027Google Scholar

    [9]

    Zhang J, Huang J, Chang J F, Wu C R, Heidbrink W W, Salewski M, Madsen B, Zhu Y B, von Hellermann M G, Gao W, Xu Z, Wan B 2018 Rev. Sci. Instrum. 89 10D121Google Scholar

    [10]

    Saquilayan G M Q, Wada M 2018 Jpn. J. Appl. Phys. 57 01AA01Google Scholar

    [11]

    商洁, 黄渊, 杨凯, 陈宝维, 刘春华, 杨屹 2021 光谱学与光谱分析 41 333

    Shang J, Huang Y, Yang K, Chen B W, Liu C H, Yang Y 2021 Spectroscopy and Spectral Analysis 41 333

    [12]

    Berezovsky E L, Efremov S L, Izvozchikov A B, Petrov, M P, Petrov S Y 1981 10th European Conference on Controlled Fusion and Plasma Physics Moscow, Russian Republic, September 14–19, 1981 p67

    [13]

    Medlley S S, Donne A J H, Kaita R, Kislyakov A I, Petrov M P, Roquemore A L 2008 Rev. Sci. Instrum. 79 011101Google Scholar

    [14]

    Medlley S S, Bell R E, Petrov M P, Roquemore A L, Suvorkin E V 2003 Rev. Sci. Instrum. 74 1896Google Scholar

    [15]

    Bracco G, Betello G, Mantovani S, Moleti A, Tilia B, Zanza V 1992 Rev.Sci.Instrum. 63 5685Google Scholar

    [16]

    Karpushov A N, Duval B P, Schlatter C 2006 Rev. Sci. Instrum. 77 033504Google Scholar

    [17]

    Chernyshev F V, Afanasyev V I, Dech A V, Kick M, Kislyakov A I, Kozlovskii S S, Kreter A, Mironov M I, Petrov M P, Petrov S Y 2004 Instr. Exp. Tech. 47 214Google Scholar

    [18]

    Zhu Y B, Bortolon A, Heidbrink W W, Celle S L, Roquemore A L 2012 Rev. Sci. Instrum. 83 10D304Google Scholar

    [19]

    Afanasiev V I, Gondhalekar A, Babenko P Y, et al. 2003 Rev. Sci. Instrum. 74 2338Google Scholar

    [20]

    Stott P E, Gorini G, Prandoni P, Sindoni E 2012 Diagnostics for Experimental Thermonuclear Fusion Reactors 2 (New York: Springer

    [21]

    Xia Z W, Li W, Yang Q W, Lu J, Yi P, Gao J M 2013 Plasma Sci. Technol. 15 101Google Scholar

    [22]

    Du X D, Van Zeeland M A, Heidbrink W W, Su D 2018 Nucl. Fusion 58 082006Google Scholar

    [23]

    Van Zeeland M A, Du X D, Heidbrink W W, Stagner L, Su D 2019 JINST 14 C09027Google Scholar

    [24]

    Rueda-Rueda J, Garcia-Munoz M, Viezzer E, Schneider P A, Garcia-Dominguez J, Ayllon-Guerola J, Galdon-Quiroga J, Herrmann A, Du X D, Van Zeeland M A, Oyola P, Rodriguez-Ramos M, ASDEX Upgrade team 2021 Rev. Sci. Instrum. 92 043554Google Scholar

    [25]

    刘洋, 徐明, 蔡辉山, 等 2023 第八届等离子体诊断会议 中国珠海, 2023年5月25−27日

    Liu Y, Xu M, Cai H S, et al. 2023 The 8th Conference on Fusion Plasma Diagnostics Zhuhai China, March 25−27, 2023

    [26]

    颜筱宇, 何小斐, 于利明, 等 2023 第八届等离子体诊断会议 中国珠海, 2023年5月25—27日

    Yan X Y, He X F, Yu L M, et al. 2023 The 8th Conference on Fusion Plasma Diagnostics Zhu Hai, China, March 25−27, 2023

    [27]

    Zhang R B, Wang X Q, Xiao C J, Wang X G, Liu Y, Deng W, Chen W, Ding X T, Duan X R, HL-2A Team 2014 Plasma Phys. Controlled Fusion 56 095007Google Scholar

    [28]

    Wang X Q, Zhang R B, Qin L, Wang X G 2014 Plasma Phys. Controlled Fusion 56 095013Google Scholar

    [29]

    Peeters A 1994 Ph. D. Dissertation (Eindhoven: Technische Universiteit Eindhoven

  • 图 1  HL-2A装置INPA诊断系统的主要结构及快离子的测量轨迹示意图

    Fig. 1.  Structure of the INPA and flight trajectories of FIs on HL-2A.

    图 2  HL-2A装置上2# NBI的注入路径和INPA诊断系统中6个测量通道所对应的观测位置

    Fig. 2.  Injection path of 2# NBI system and the observed positions for 6 channels of INPA on HL-2A.

    图 3  在HL-2A装置极向截面显示的INPA系统观测到的粒子位置和螺距角

    Fig. 3.  Positions and pitch angles of the observed particles from INPA system in the poloidal cross section in HL-2A.

    图 4  HL-2A装置上INPA诊断系统主要部件的实物及内部布置图 (a) INPA的外观图; (b)内部剥离膜片和闪烁体的布局图; (c)碳微晶体膜片尺寸和结构

    Fig. 4.  External figure and arrangement inside the chamber of INPA diagnostics on HL-2A: (a) External figure; (b) arrangement of carbon microcrystal diaphragm and scintillator inside the chamber: (c) detail structure of carbon microcrystal diaphragm

    图 5  INPA诊断系统中几何机构引起的误差分析 (a)粒子束在磁场中的偏转及在闪烁体上的轰击斑; (b) INPA诊断系统6个测量通道的粒子在闪烁体上的落点; (c)粒子在闪烁体上的落点位置和入射能量的关系; (d)能量分辨率与粒子能量的关系

    Fig. 5.  Analysis of errors caused by geometric mechanisms of diagnostic systems: (a) Flight orbits and impact spots of the measured particles on scintillator; (b) positions of impact spots from the particles from 6 channels in INPA; (c) relationship between the position of the particle’s landing point on the scintillator and the incident energy; (d) relationship between energy of particles and energy resolution

    图 6  HL-2A装置上INPA诊断系统的安装 (a) INPA诊断系统在真空室内的安装位置; (b) INPA诊断系统在真空室外的高速相机、光纤束和法兰等

    Fig. 6.  Installation of INPA system on HL-2A: (a) Installation of the INPA on the flange inside the vacuum chamber; (b) arrangement of the fast speed camera, light fiber bundle and flange

    图 7  HL-2A装置上第38140次放电的实验参数及观测到的LLM不稳定性 (a) 等离子体主要放电参数, 即$I_{\rm{p}}$、等离子体平均密度$n_{\rm{e}}$$B_{\rm{t}}$; (b) $1^\#$$2^\#$NBI束线的加热功率和时序; (c)氘$\alpha$(${{D}}_\alpha$)辐射信号; (d) Mirnov磁探针信号及(e)频率谱图

    Fig. 7.  Discharge parameters and the observed LLM instabilities in shot 38140 on HL-2A: (a) Main discharge parameters, $I_{\rm{p}}$, line-averaged electron density $n_{\rm{e}}$ and $B_{\rm{t}}$; (b) heating power of $1^\#$ and $2^\#$ NBI systems and evolution; (c) ${{D}}_\alpha$ signal; (d) Mirnov signal and (e) its spectrogram

    图 8  NBI期间的LLM引起的粒子轰击图像 (a)—(l) LLM在H模和L模运行期间的不同时刻在INPA闪烁体上观测到的粒子轰击图像及演化

    Fig. 8.  Impact spots caused by LLM instabilities on scintillator screen: (a)–(l) impact light spots of measured particles caused by LLM on scintillator screen in different time during H- and L-mode operation scenarios

    图 9  通过闪烁屏上的轰击斑位置得到的快离子能量和位置

    Fig. 9.  Energy and birthplace of FIs based on the impact light spot on scintillator screen

    图 10  通过具有空间分辨率的远红外密度干涉仪的密度扰动确定LLM的局域位置

    Fig. 10.  Locations of LLM confirmed by the fluctuations in electron-density by far-infrared laser interferometer with a rough spatial resolution.

    图 11  (a) 1356 ms前后等离子体转动频率随大半径的变化; (b)大半径在170 cm附近, 等离子体转动频率随时间的变化

    Fig. 11.  (a) Variations of plasma rotation frequency with R around 1356 ms; (b) variations of plasma rotation frequency with time for R around 170 cm

    表 1  INPA诊断系统的6个测量通道所观测粒子的位置和粒子特征信息

    Table 1.  Observed positions and characteristic information of particles from the 6 channels of the INPA system

    测量通道(No.) 1 2 3 4 5 6
    R/cm 172.6 170.6 170.9 175.8 180.5 211.8
    Z/cm –10.5 –10.5 –10.5 –10.5 –10.5 –10.5
    $\theta$/(°) 90.0 121.9 149.2 170.9 172.0 158.4
    $v_{/ /}/v$ 0 0.53 0.86 0.98 0.99 0.93
    下载: 导出CSV

    表 2  INPA诊断系统的6个通道对应的测量范围

    Table 2.  Measurement ranges corresponding to the 6 channels of the INPA diagnostic system

    测量通道(No.) 1 2 3 4 5 6
    $ R_{{\rm{min}}} $/cm 172.1 170.4 170.6 174.3 185.5 201.5
    $R_{{\rm{max}}}$/cm 173.2 170.9 171.5 177.8 194.1 219.1
    $\phi$/(°) 1.25 1.00 0.59 0.33 0.19 0.11
    下载: 导出CSV

    表 3  通行快离子的理论计算频率值与实验观测LLM不稳定性频率对比

    Table 3.  Comparisons between the calculated frequency of EIs and $f_{{\rm{LLM}}}$

    E/keV $f_{\rm{p}}$/kHz $f_{\rm{t}}$/kHz $f_{{\rm{Lab}}} = f_{\rm{p}}+f_{{\rm{t}}}$/kHz $f_{{\rm{LLM}}}$/kHz
    12.5 2.4 8.1 2.4 + 8.1 = 10.5 13.4
    32 6.2 8.1 6.2 + 8.1 = 14.3 13.4
    下载: 导出CSV
  • [1]

    Heidbrink W W 2002 Phys. Plasmas 9 2113Google Scholar

    [2]

    Chen L, Zonca F 2016 Rev. Mod. Phys. 88 015008Google Scholar

    [3]

    Ding X T, Chen W 2018 Plasma Sci. Technol. 20 094008Google Scholar

    [4]

    Shi P W, Chen W, Duan X R 2021 Chin. Phys. Lett 38 035202Google Scholar

    [5]

    Chen W, Wang Z X 2020 Chin. Phys. Lett. 37 125001Google Scholar

    [6]

    Fasoli A, Gormenzano C, Berk H L, Breizman B, Briguglio S, Darrow D S, Gorelenkov N, Heidbrink W W, Jaun A, Konovalov S V 2007 Nucl. Fusion 47 S264Google Scholar

    [7]

    Afanasyev V I, Chernyshev F V, Kozlovsky S S, et al. 2022 JINST 17 C07001Google Scholar

    [8]

    Kocan M, Garcia-Munoz M, Ayllon-Guerola J, et al. 2017 JINST 12 C12027Google Scholar

    [9]

    Zhang J, Huang J, Chang J F, Wu C R, Heidbrink W W, Salewski M, Madsen B, Zhu Y B, von Hellermann M G, Gao W, Xu Z, Wan B 2018 Rev. Sci. Instrum. 89 10D121Google Scholar

    [10]

    Saquilayan G M Q, Wada M 2018 Jpn. J. Appl. Phys. 57 01AA01Google Scholar

    [11]

    商洁, 黄渊, 杨凯, 陈宝维, 刘春华, 杨屹 2021 光谱学与光谱分析 41 333

    Shang J, Huang Y, Yang K, Chen B W, Liu C H, Yang Y 2021 Spectroscopy and Spectral Analysis 41 333

    [12]

    Berezovsky E L, Efremov S L, Izvozchikov A B, Petrov, M P, Petrov S Y 1981 10th European Conference on Controlled Fusion and Plasma Physics Moscow, Russian Republic, September 14–19, 1981 p67

    [13]

    Medlley S S, Donne A J H, Kaita R, Kislyakov A I, Petrov M P, Roquemore A L 2008 Rev. Sci. Instrum. 79 011101Google Scholar

    [14]

    Medlley S S, Bell R E, Petrov M P, Roquemore A L, Suvorkin E V 2003 Rev. Sci. Instrum. 74 1896Google Scholar

    [15]

    Bracco G, Betello G, Mantovani S, Moleti A, Tilia B, Zanza V 1992 Rev.Sci.Instrum. 63 5685Google Scholar

    [16]

    Karpushov A N, Duval B P, Schlatter C 2006 Rev. Sci. Instrum. 77 033504Google Scholar

    [17]

    Chernyshev F V, Afanasyev V I, Dech A V, Kick M, Kislyakov A I, Kozlovskii S S, Kreter A, Mironov M I, Petrov M P, Petrov S Y 2004 Instr. Exp. Tech. 47 214Google Scholar

    [18]

    Zhu Y B, Bortolon A, Heidbrink W W, Celle S L, Roquemore A L 2012 Rev. Sci. Instrum. 83 10D304Google Scholar

    [19]

    Afanasiev V I, Gondhalekar A, Babenko P Y, et al. 2003 Rev. Sci. Instrum. 74 2338Google Scholar

    [20]

    Stott P E, Gorini G, Prandoni P, Sindoni E 2012 Diagnostics for Experimental Thermonuclear Fusion Reactors 2 (New York: Springer

    [21]

    Xia Z W, Li W, Yang Q W, Lu J, Yi P, Gao J M 2013 Plasma Sci. Technol. 15 101Google Scholar

    [22]

    Du X D, Van Zeeland M A, Heidbrink W W, Su D 2018 Nucl. Fusion 58 082006Google Scholar

    [23]

    Van Zeeland M A, Du X D, Heidbrink W W, Stagner L, Su D 2019 JINST 14 C09027Google Scholar

    [24]

    Rueda-Rueda J, Garcia-Munoz M, Viezzer E, Schneider P A, Garcia-Dominguez J, Ayllon-Guerola J, Galdon-Quiroga J, Herrmann A, Du X D, Van Zeeland M A, Oyola P, Rodriguez-Ramos M, ASDEX Upgrade team 2021 Rev. Sci. Instrum. 92 043554Google Scholar

    [25]

    刘洋, 徐明, 蔡辉山, 等 2023 第八届等离子体诊断会议 中国珠海, 2023年5月25−27日

    Liu Y, Xu M, Cai H S, et al. 2023 The 8th Conference on Fusion Plasma Diagnostics Zhuhai China, March 25−27, 2023

    [26]

    颜筱宇, 何小斐, 于利明, 等 2023 第八届等离子体诊断会议 中国珠海, 2023年5月25—27日

    Yan X Y, He X F, Yu L M, et al. 2023 The 8th Conference on Fusion Plasma Diagnostics Zhu Hai, China, March 25−27, 2023

    [27]

    Zhang R B, Wang X Q, Xiao C J, Wang X G, Liu Y, Deng W, Chen W, Ding X T, Duan X R, HL-2A Team 2014 Plasma Phys. Controlled Fusion 56 095007Google Scholar

    [28]

    Wang X Q, Zhang R B, Qin L, Wang X G 2014 Plasma Phys. Controlled Fusion 56 095013Google Scholar

    [29]

    Peeters A 1994 Ph. D. Dissertation (Eindhoven: Technische Universiteit Eindhoven

  • [1] 杨三祥, 赵以德, 代鹏, 李建鹏, 谷增杰, 孟伟, 耿海, 郭宁, 贾艳辉, 杨俊泰. 霍尔推力器中电子碰撞及等离子体密度和磁场梯度激发的不稳定性. 物理学报, 2025, 74(2): 025201. doi: 10.7498/aps.74.20241330
    [2] 李正吉, 陈伟, 孙爱萍, 于利明, 王卓, 陈佳乐, 许健强, 李继全, 石中兵, 蒋敏, 李永高, 何小雪, 杨曾辰, 李鉴. HL-2A装置高βN双输运垒实验的集成分析. 物理学报, 2024, 73(6): 065202. doi: 10.7498/aps.73.20231543
    [3] 朱霄龙, 陈伟, 王丰, 王正汹. 托卡马克中低频磁流体不稳定性协同作用引起快粒子输运的混合模拟研究. 物理学报, 2023, 72(21): 215210. doi: 10.7498/aps.72.20230620
    [4] 郝保龙, 李颖颖, 陈伟, 郝广周, 顾翔, 孙恬恬, 王嵎民, 董家齐, 袁保山, 彭元凯, 石跃江, 谢华生, 刘敏胜, ENN TEAM. EXL-50U球形环中快离子磁场波纹损失的优化模拟研究. 物理学报, 2023, 72(21): 215215. doi: 10.7498/aps.72.20230749
    [5] 郑殊, 张甲鹏, 段萍, 魏来, 王先驱. 黏滞等离子体中双撕裂模不稳定性的数值模拟研究. 物理学报, 2013, 62(2): 025205. doi: 10.7498/aps.62.025205
    [6] 简广德, 董家齐. 环形等离子体中电子温度梯度不稳定性的粒子模拟. 物理学报, 2003, 52(7): 1656-1662. doi: 10.7498/aps.52.1656
    [7] 杜嘉陵. 定向快凝中的晶态不稳定性. 物理学报, 1999, 48(8): 1547-1551. doi: 10.7498/aps.48.1547
    [8] 黄朝松, 李钧. 等离子体交换不稳定性的模耦合理论. 物理学报, 1992, 41(5): 783-791. doi: 10.7498/aps.41.783
    [9] 郭世宠, 沈解伍, 蔡诗东. 温离子对动力迥旋损失锥不稳定性的作用. 物理学报, 1988, 37(12): 1993-2003. doi: 10.7498/aps.37.1993
    [10] 黄朝松, 任兆杏, 邱励俭. 热电子等离子体的耗散漂移不稳定性. 物理学报, 1987, 36(9): 1112-1121. doi: 10.7498/aps.36.1112
    [11] 徐学桥, 霍裕平. 托卡马克中宏观束-等离子体扭曲模不稳定性研究. 物理学报, 1986, 35(10): 1259-1270. doi: 10.7498/aps.35.1259
    [12] 顾永年. 小环径比锐边界等离子体的扭曲模不稳定性. 物理学报, 1984, 33(4): 554-560. doi: 10.7498/aps.33.554
    [13] 贺贤士. 等离子体中调制不稳定性和波包的坍缩过程. 物理学报, 1983, 32(5): 627-639. doi: 10.7498/aps.32.627
    [14] 周玉美, 吴京生. 高β等离子体的离子-离子束不稳定性. 物理学报, 1983, 32(10): 1319-1322. doi: 10.7498/aps.32.1319
    [15] 郭世宠, 沈解伍, 陈骝, 蔡诗东. 离子温度梯度不稳定性的解析理论. 物理学报, 1982, 31(1): 17-29. doi: 10.7498/aps.31.17
    [16] 王中天. 非圆截面等离子体MHD不稳定性的研究. 物理学报, 1981, 30(5): 573-583. doi: 10.7498/aps.30.573
    [17] 陆全康. 关于等离子体的电磁波不稳定性(Ⅱ). 物理学报, 1981, 30(2): 266-270. doi: 10.7498/aps.30.266
    [18] 顾永年, 邱乃贤. 椭圆截面等离子体柱的扭曲不稳定性. 物理学报, 1980, 29(11): 1367-1377. doi: 10.7498/aps.29.1367
    [19] 周玉美, 蔡诗东. 磁化等离子体里高频模和低频模耦合的参量不稳定性. 物理学报, 1980, 29(7): 916-926. doi: 10.7498/aps.29.916
    [20] 石长和. 等离子射流的磁流不稳定性. 物理学报, 1965, 21(9): 1700-1704. doi: 10.7498/aps.21.1700
计量
  • 文章访问数:  2718
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-11
  • 修回日期:  2023-07-25
  • 上网日期:  2023-08-02
  • 刊出日期:  2023-11-05

/

返回文章
返回