搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非厄米哈密顿量中的量子Fisher信息与参数估计

李竞 丁海涛 张丹伟

引用本文:
Citation:

非厄米哈密顿量中的量子Fisher信息与参数估计

李竞, 丁海涛, 张丹伟

Quantum Fisher information and parameter estimation in non-Hermitian Hamiltonians

Li Jing, Ding Hai-Tao, Zhang Dan-Wei
PDF
HTML
导出引用
  • 量子Fisher信息给出参数估计的最优精度极限, 在量子度量学中有重要的应用. 近年来, 在量子系统中实现非厄米哈密顿量的理论与实验研究受到广泛关注. 本文研究基于非厄米哈密顿量本征态的参数估计, 给出其中单参数与两参数估计的量子Fisher信息及其量子Cramér-Rao下界, 计算与分析非互易、具有增益-耗散的Su-Schrieffer-Heeger模型, 非厄米量子Ising链、拓扑陈绝缘体模型和二能级系统中动量及外场参数估计的量子Fisher信息. 结果表明: 在这几个非厄米模型中, 对于单参数估计, 量子Fisher信息在能隙闭合区域和例外点附近显著增大, 从而提高参数估计的精度极限; 对于两参数估计, 量子Fisher信息矩阵的行列式在能隙闭合和例外点附近同样明显增大, 拓扑区域比平庸区域的整体评估精度更高, 且由陈数确定两参数估计误差的拓扑下界.
    Quantum Fisher information bounds the ultimate precision limit in the parameter estimation and has important applications in quantum metrology. In recent years, the theoretical and experimental studies of non-Hermitian Hamiltonians realized in quantum systems have attracted wide attention. Here, the parameter estimation based on eigenstates of non-Hermitian Hamiltonians is investigated, and the corresponding quantum Fisher information and quantum Cramér-Rao bound for the single-parameter and two-parameter estimations are given. In particular, the quantum Fisher information about estimating intrinsic momentum and external parameters in the non-reciprocal and gain-and-loss Su-Schrieffer-Heeger models, and non-Hermitian versions of the quantum Ising chain, Chern-insulator model and two-level system are calculated and analyzed. For these non-Hermitian models, the results show that in the case of single-parameter estimation in these non-Hermitian models, the quantum Fisher information increases significantly in the gapless regime and near the exceptional points, which can improve the accuracy limit of parameter estimation. For the two-parameter estimation, the determinant of the quantum Fisher information matrix also increases obviously near the gapless and exceptional points. In addition, a higher overall accuracy can be achieved in the topological regime than in the trivial regime, and the topological bound in two-parameter estimation can be determined by the Chern number.
      通信作者: 张丹伟, danweizhang@m.scnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174126)和广东省基础与应用基础研究基金(批准号: 2021A1515010315)资助的课题.
      Corresponding author: Zhang Dan-Wei, danweizhang@m.scnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12174126) and the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2021A1515010315).
    [1]

    Helstrom C W 1969 J. Stat. Phys. 1 231Google Scholar

    [2]

    Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439Google Scholar

    [3]

    Liu J, Yuan H D, Lu X M, Wang X G 2020 J. Phys. A: Math. Theor. 53 023001Google Scholar

    [4]

    Sidhu J S, Kok P 2020 AVS Quantum Sci. 2 014701Google Scholar

    [5]

    任志红, 李岩, 李艳娜, 李卫东 2019 物理学报 68 040601Google Scholar

    Ren Z H, Li Y, Li Y N, Li W D 2019 Acta Phys. Sin. 68 040601Google Scholar

    [6]

    Provost J P, Vallee G 1980 Commun. Math. Phys. 76 289Google Scholar

    [7]

    Mera B, Zhang A W, Goldman N 2022 SciPost Phys. 12 018Google Scholar

    [8]

    Guo W, Zhong W, Jing X X, Fu L B, Wang X G 2016 Phys. Rev. A 93 042115Google Scholar

    [9]

    Tan X S, Zhang D W, Yang Z, Chu J, Zhu Y Q, Li D Y, Yang X P, Song S Q, Han Z K, Li Z Y, Dong Y Q, Yu H F, Yan H, Zhu S L, Yu Y 2019 Phys. Rev. Lett. 122 210401Google Scholar

    [10]

    Tan X S, Zhang D W, Zheng W, Yang X P, Song S Q, Han Z K, Dong Y Q, Wang Z M, Lan D, Yan H, Zhu S L, Yu Y 2021 Phys. Rev. Lett. 126 017702Google Scholar

    [11]

    Ding H T, Zhu Y Q, He P, Liu Y G, Wang J T, Zhang D W, Zhu S L 2022 Phys. Rev. A 105 012210Google Scholar

    [12]

    Yu M, Liu Y, Yang P C, Gong M S, Cao Q Y, Zhang S L, Liu H B, Heyl M, Ozawa T, Goldman N, Cai J M 2022 npj Quantum Inf. 8 56Google Scholar

    [13]

    Yu M, Li X B, Chu Y M, Mera B, Ünal F N, Yang P C, Liu Y, Goldman N, Cai J M 2022 arXiv: 2206.00546[quant-ph

    [14]

    Li C H, Chen M, Cappellaro P 2022 arXiv: 2204.13777[quant-ph

    [15]

    Zhang X Y, Lu X M, Liu J, Ding W K, Wang X G 2023 Phys. Rev. A 107 012414Google Scholar

    [16]

    Boixo S, Flammia S T, Caves C M, Geremia J M 2007 Phys. Rev. Lett. 98 090401Google Scholar

    [17]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photonics 5 222Google Scholar

    [18]

    刘然, 吴泽, 李宇晨, 陈昱全, 彭新华 2023 物理学报 72 110305Google Scholar

    Liu R, Wu Z, Li Y C, Chen Y Q, Peng X H 2023 Acta Phys. Sin. 72 110305Google Scholar

    [19]

    Di Candia R, Minganti F, Petrovnin K V, Paraoanu G S, Felicetti S 2023 npj Quantum Inf. 9 23Google Scholar

    [20]

    Liang H B, Su Y G, Xiao X, Che Y M, Sanders B C, Wang X G 2020 Phys. Rev. A 102 013722Google Scholar

    [21]

    He W T, Lu C W, Yao Y X, Zhu H Y, Ai Q 2023 Front. Phys. 18 31304Google Scholar

    [22]

    牛明丽, 王月明, 李志坚 2022 物理学报 71 090601Google Scholar

    Niu M L, Wang Y M, Li Z J 2022 Acta Phys. Sin. 71 090601Google Scholar

    [23]

    Lu X M, Wang X G 2021 Phys. Rev. Lett. 126 120503Google Scholar

    [24]

    Lin Q, Li T Y, Xiao L, Wang K K, Yi W, Xue P 2022 Nat. Commun. 13 3229Google Scholar

    [25]

    Xiao L, Deng T S, Wang K K, Zhu G Y, Wang Z, Yi W, Xue P 2020 Nat. Phys. 16 761Google Scholar

    [26]

    Li J M, Harter A K, Liu J, Leonardo D M, Joglekar Y N, Luo L 2019 Nat. Commun. 10 855Google Scholar

    [27]

    Wu Y, Liu W Q, Geng J P, Song X R, Ye X Y, Duan C K, Rong X, Du J F 2019 Science 364 878Google Scholar

    [28]

    Naghiloo M, Abbasi M, Joglekar Y N, Murch K W 2019 Nat. Phys. 15 1232Google Scholar

    [29]

    高雪儿, 李代莉, 刘志航, 郑超 2022 物理学报 71 240303Google Scholar

    Gao X E, Li D L, Liu Z H, Zheng C 2022 Acta Phys. Sin. 71 240303Google Scholar

    [30]

    张禧征, 王鹏, 张坤亮, 杨学敏, 宋智 2022 物理学报 71 174501Google Scholar

    Zhang X Z, Wang P, Zhang K L, Yang X M, Song Z 2022 Acta Phys. Sin. 71 174501Google Scholar

    [31]

    Solnyshkov D D, Leblanc C, Bessonart L, Nalitov A, Ren J H, Liao Q, Li F, Malpuech G 2021 Phys. Rev. B 103 125302Google Scholar

    [32]

    Liao Q, Leblanc C, Ren J H, Li F, Li Y M, Solnyshkov D, Malpuech G, Yao J N, Fu H B 2021 Phys. Rev. Lett. 127 107402Google Scholar

    [33]

    Wiersig J 2020 Photonics Res. 8 1457Google Scholar

    [34]

    Zhang D W, Zhu Y Q, Zhao Y X, Yan H, Zhu S L 2018 Adv. Phys. 67 253Google Scholar

    [35]

    Lang L J, Zhu S L, Chong Y D 2021 Phys. Rev. B 104 L020303Google Scholar

    [36]

    Zhang D W, Chen Y L, Zhang G Q, Lang L J, Li Z, Zhu S L 2020 Phys. Rev. B 101 235150Google Scholar

    [37]

    Xu Z C, Zhou Z Y, Cheng E H, Lang L J, Zhu S L 2022 Sci. China: Phys., Mech. Astron. 65 283011Google Scholar

    [38]

    Shen H T, Zhen B, Fu L 2018 Phys. Rev. Lett. 120 146402Google Scholar

    [39]

    Yao S Y, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [40]

    Zhang D W, Tang L Z, Lang L J, Yan H, Zhu S L 2020 Sci. China: Phys., Mech. Astron. 63 267062Google Scholar

    [41]

    Tang L Z, Zhang L F, Zhang G Q, Zhang D W 2020 Phys. Rev. A 101 063612Google Scholar

    [42]

    Jiang H, Lang L J, Yang C, Zhu S L, Chen S 2019 Phys. Rev. B 100 054301Google Scholar

    [43]

    Budich J C, Bergholtz E J 2020 Phys. Rev. Lett. 125 180403Google Scholar

    [44]

    Koch F, Budich J C 2022 Phys. Rev. Res. 4 013113Google Scholar

    [45]

    Pati A K, Singh U, Sinha U 2015 Phys. Rev. A 92 052120Google Scholar

    [46]

    Heeger A J, Kivelson S, Schrieffer J R, Su W P 1988 Rev. Mod. Phys. 60 781Google Scholar

    [47]

    Yin C H, Jiang H, Li L H, Lü R, Chen S 2018 Phys. Rev. A 97 052115Google Scholar

    [48]

    Zhu B G, Lü R, Chen S 2014 Phys. Rev. A 89 062102Google Scholar

    [49]

    Yuce C 2018 Phys. Rev. A 97 042118Google Scholar

    [50]

    Li C, Zhang G, Zhang X Z, Song Z 2014 Phys. Rev. A 90 012103Google Scholar

    [51]

    Guo Z X, Yu X J, Hu X D, Li Z 2022 Phys. Rev. A 105 053311Google Scholar

    [52]

    Jordan P, Wigner E 1928 Z. Physik 47 631Google Scholar

    [53]

    Qi X L, Wu Y S, Zhang S C 2006 Phys. Rev. B 74 085308Google Scholar

    [54]

    Kawabata K, Shiozaki K, Ueda M 2018 Phys. Rev. B 98 165148Google Scholar

  • 图 1  基于非互易SSH模型的单参数估计 (a)能隙$ \Delta E $tδ的变化; (b) $ \delta=0.2 $时利用右本征矢$ |\psi^{{\rm{R}}}\rangle $评估k的量子Fisher信息$ F_k $kt的变化(上图)及其积分$ M_k $t的变化(下图实线); (c)利用$ |\psi^{{\rm{R}}}\rangle $评估δ$ M_\delta $δ的变化(实线); (d)利用$ |\psi^{{\rm{R}}}\rangle $评估t$ M_t $t的变化(实线). 图(b)—(d)中的数据点表示利用左本征矢$ |\psi^{{\rm{L}}}\rangle $评估k, tδ时相应的数值结果. 图中$ t^\prime=1 $, $ F_k $$ M_\mu $做对数处理

    Fig. 1.  Single-parameter estimation based on the non-reciprocal SSH model: (a) Energy gap $ \Delta E $ as functions of t and δ; (b) $ F_k $ by the right eigenstate $ |\psi^{{\rm{R}}}\rangle $ as functions of k and t for estimating k (top) and the integration $ M_k $ by $ |\psi^{{\rm{R}}}\rangle $ as a function of t (solid line in the bottom)with $ \delta=0.2 $; (c) the integration $ M_\delta $ by using $ |\psi^{{\rm{R}}}\rangle $ (solid line) as a function of δ for estimating δ; (d) the integration $ M_t $ by using $ |\psi^{{\rm{R}}}\rangle $ (solid line) as a function of t for estimating t. The data points in panels (b)–(d) denote the corresponding numerical results for estimating k, t or δ by using the left eigenstate $ |\psi^{{\rm{L}}}\rangle $. $ t^\prime=1 $ is set and $ F_k $ and $ M_\mu $ are logarithmically plotted in the picture.

    图 2  原胞数$ N=20 $的非互易SSH模型在不同边界耦合常数Γ下的单参数估计 (a)和(b)分别是开边界情况$ \varGamma = 0 $时本征能量的实部与虚部随参数t的变化; (c)为开边界条件下利用中间能态$ |\psi_{{\rm{mid}}}\rangle $和基态$ |\psi_{{\rm{ground}}}\rangle $评估参数t的量子Fisher信息$ F_{t} $t的变化, 图中EP表示例外点, GP表示能隙闭合点; (d)和(e)分别是$ \varGamma = 0.1, 0.6 $时本征能量实部随t的变化; (f)和(g)为不同边界耦合常数Γ$ F_{t} $t的变化. 图中$ t^\prime=1,\; \delta=2/3 $, $ F_{t} $做对数处理

    Fig. 2.  Single-parameter estimation based on the non-reciprocal SSH model with different boundary coupling coefficients Γ and the unit cell of $ N=20 $: (a) The real part and (b) the imaginary part of the eigen-spectrum as functions of t under open boundary condition with $ \varGamma = 0 $; (c) $ F_t $ as a function of t by the mid-spectrum eigenstate $ |\psi_{{\rm{mid}}}\rangle $ and the ground state $ |\psi_{{\rm{ground}}}\rangle $ for estimating t with $ \varGamma = 0 $. Here EP and GP denote exceptional point and gapless point, respectively; (d) and (e) the real part of energy as a function of t with $ \varGamma = 0.1, 0.6 $, respectively; (f) and (g) $ F_t $ as a function of t different values of Γ. In the figure, $ t^\prime=1,\; \delta=2/3 $, and $ F_{t} $ is logarithmically plotted.

    图 3  基于具有增益-耗散的SSH模型((a), (b))和非厄米量子Ising链((c), (d))的单参数估计 (a)能隙$ \Delta E $tγ的变化, 有能隙区域能谱为实, 无能隙区域能谱为复且存在EP点; (b)$ \gamma=0.5 $$ t=\{0.3, 1, 1.7\} $时评估k的量子Fisher信息$ F_k $k的变化; (c)能隙$ \Delta E $λh的变化, 能隙关闭处为复能量的铁磁态和顺磁态的相边界; (d)评估λ时的$ M_\lambda $λ的变化. 图中$ t^\prime=1 $$ J=1 $

    Fig. 3.  Single-parameter estimation based on the gain-and-loss SSH model ((a), (b)) and the non-Hermtian quantum Ising chain ((c), (d)): (a) Energy gap $ \Delta E $ as functions of t and γ, and the gapped (gapless) region contains real (complex) eigen-spectrum (with exceptional points); (b) $ F_k $ as a function of k for estimating k with $ \gamma=0.5 $ and $ t=\{0.3, 1, 1.7\} $; (c) energy gap $ \Delta E $ as functions of λ and h, and the gapless line denotes the phase boundary between the ferromagnetic and paramagnetic states with complex energies; (d) $ M_\lambda $ as a function of λ for estimating λ. $ t^\prime=1 $ and $ J=1 $ are set.

    图 4  基于非厄米陈绝缘体模型的两参数估计  (a)拓扑相图, 包括有能隙的拓扑和平庸区域, 分别对应陈数$ C=1 $$ C=0 $, 以及无能隙区域; (b) $ \delta=0.2 $$ t=\{1.4, 2, 2.6\} $(依次从上到下)时评估$ \{k_x, k_y\} $的量子Fisher信息矩阵行列式$ {\rm{det}}{\cal{F}}{_{k_xk_y}} $$ k_x, k_y $的变化; (c) $ \delta=0.2 $时评估$ \{k_x, k_y\} $$ M_{k_xk_y} $和评估$ \{t, \delta\} $$ M_{t\delta} $t的变化. 图(c)中$ M_{\mu\nu} $和图(b)中间图$ {\rm{det}}{\cal{F}}{_{k_xk_y}} $做对数处理

    Fig. 4.  Two-parameter estimation based on the non-Hermtian Chern-insulator model: (a) Topological phase diagram with gapped topological ($ C=1 $), trivial ($ C=0 $), and gapless regions; (b) determinant of quantum Fisher information matrix $ {\rm{det}}{\cal{F}}{_{k_xk_y}} $ as functions of $ k_x $ and $ k_y $ for estimating $ \{k_x, k_y\} $ with $ \delta=0.2 $ and $ t=\{1.4, 2, 2.6\} $ (from top to bottom); (c) the integration $ M_{k_xk_y} $ for estimating $ \{k_x, k_y\} $ and $ M_{t\delta} $ for estimating $ \{t, \delta\} $ as a function of t with $ \delta=0.2 $. $ M_{\mu\nu} $ in panel (c) and $ {\rm{det}}{\cal{F}}{_{k_xk_y}} $ in the middle of panels (b) are logarithmically plotted.

    图 5  基于非厄米二能级系统的两参数估计评估$ \{k_x, k_y\} $时, (a)$ M_{k_xk_y} $和(b)Vrδ的变化. 图(a)中$ M_{k_xk_y} $做对数处理

    Fig. 5.  Two-parameter estimation based on the non-Hermitian two-level system. (a) $ M_{k_xk_y} $ and (b) V as functions of r and δ for estimating $ \{k_x, k_y\} $. $ M_{k_xk_y} $ in panel (a) is logarithmically plotted.

  • [1]

    Helstrom C W 1969 J. Stat. Phys. 1 231Google Scholar

    [2]

    Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439Google Scholar

    [3]

    Liu J, Yuan H D, Lu X M, Wang X G 2020 J. Phys. A: Math. Theor. 53 023001Google Scholar

    [4]

    Sidhu J S, Kok P 2020 AVS Quantum Sci. 2 014701Google Scholar

    [5]

    任志红, 李岩, 李艳娜, 李卫东 2019 物理学报 68 040601Google Scholar

    Ren Z H, Li Y, Li Y N, Li W D 2019 Acta Phys. Sin. 68 040601Google Scholar

    [6]

    Provost J P, Vallee G 1980 Commun. Math. Phys. 76 289Google Scholar

    [7]

    Mera B, Zhang A W, Goldman N 2022 SciPost Phys. 12 018Google Scholar

    [8]

    Guo W, Zhong W, Jing X X, Fu L B, Wang X G 2016 Phys. Rev. A 93 042115Google Scholar

    [9]

    Tan X S, Zhang D W, Yang Z, Chu J, Zhu Y Q, Li D Y, Yang X P, Song S Q, Han Z K, Li Z Y, Dong Y Q, Yu H F, Yan H, Zhu S L, Yu Y 2019 Phys. Rev. Lett. 122 210401Google Scholar

    [10]

    Tan X S, Zhang D W, Zheng W, Yang X P, Song S Q, Han Z K, Dong Y Q, Wang Z M, Lan D, Yan H, Zhu S L, Yu Y 2021 Phys. Rev. Lett. 126 017702Google Scholar

    [11]

    Ding H T, Zhu Y Q, He P, Liu Y G, Wang J T, Zhang D W, Zhu S L 2022 Phys. Rev. A 105 012210Google Scholar

    [12]

    Yu M, Liu Y, Yang P C, Gong M S, Cao Q Y, Zhang S L, Liu H B, Heyl M, Ozawa T, Goldman N, Cai J M 2022 npj Quantum Inf. 8 56Google Scholar

    [13]

    Yu M, Li X B, Chu Y M, Mera B, Ünal F N, Yang P C, Liu Y, Goldman N, Cai J M 2022 arXiv: 2206.00546[quant-ph

    [14]

    Li C H, Chen M, Cappellaro P 2022 arXiv: 2204.13777[quant-ph

    [15]

    Zhang X Y, Lu X M, Liu J, Ding W K, Wang X G 2023 Phys. Rev. A 107 012414Google Scholar

    [16]

    Boixo S, Flammia S T, Caves C M, Geremia J M 2007 Phys. Rev. Lett. 98 090401Google Scholar

    [17]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photonics 5 222Google Scholar

    [18]

    刘然, 吴泽, 李宇晨, 陈昱全, 彭新华 2023 物理学报 72 110305Google Scholar

    Liu R, Wu Z, Li Y C, Chen Y Q, Peng X H 2023 Acta Phys. Sin. 72 110305Google Scholar

    [19]

    Di Candia R, Minganti F, Petrovnin K V, Paraoanu G S, Felicetti S 2023 npj Quantum Inf. 9 23Google Scholar

    [20]

    Liang H B, Su Y G, Xiao X, Che Y M, Sanders B C, Wang X G 2020 Phys. Rev. A 102 013722Google Scholar

    [21]

    He W T, Lu C W, Yao Y X, Zhu H Y, Ai Q 2023 Front. Phys. 18 31304Google Scholar

    [22]

    牛明丽, 王月明, 李志坚 2022 物理学报 71 090601Google Scholar

    Niu M L, Wang Y M, Li Z J 2022 Acta Phys. Sin. 71 090601Google Scholar

    [23]

    Lu X M, Wang X G 2021 Phys. Rev. Lett. 126 120503Google Scholar

    [24]

    Lin Q, Li T Y, Xiao L, Wang K K, Yi W, Xue P 2022 Nat. Commun. 13 3229Google Scholar

    [25]

    Xiao L, Deng T S, Wang K K, Zhu G Y, Wang Z, Yi W, Xue P 2020 Nat. Phys. 16 761Google Scholar

    [26]

    Li J M, Harter A K, Liu J, Leonardo D M, Joglekar Y N, Luo L 2019 Nat. Commun. 10 855Google Scholar

    [27]

    Wu Y, Liu W Q, Geng J P, Song X R, Ye X Y, Duan C K, Rong X, Du J F 2019 Science 364 878Google Scholar

    [28]

    Naghiloo M, Abbasi M, Joglekar Y N, Murch K W 2019 Nat. Phys. 15 1232Google Scholar

    [29]

    高雪儿, 李代莉, 刘志航, 郑超 2022 物理学报 71 240303Google Scholar

    Gao X E, Li D L, Liu Z H, Zheng C 2022 Acta Phys. Sin. 71 240303Google Scholar

    [30]

    张禧征, 王鹏, 张坤亮, 杨学敏, 宋智 2022 物理学报 71 174501Google Scholar

    Zhang X Z, Wang P, Zhang K L, Yang X M, Song Z 2022 Acta Phys. Sin. 71 174501Google Scholar

    [31]

    Solnyshkov D D, Leblanc C, Bessonart L, Nalitov A, Ren J H, Liao Q, Li F, Malpuech G 2021 Phys. Rev. B 103 125302Google Scholar

    [32]

    Liao Q, Leblanc C, Ren J H, Li F, Li Y M, Solnyshkov D, Malpuech G, Yao J N, Fu H B 2021 Phys. Rev. Lett. 127 107402Google Scholar

    [33]

    Wiersig J 2020 Photonics Res. 8 1457Google Scholar

    [34]

    Zhang D W, Zhu Y Q, Zhao Y X, Yan H, Zhu S L 2018 Adv. Phys. 67 253Google Scholar

    [35]

    Lang L J, Zhu S L, Chong Y D 2021 Phys. Rev. B 104 L020303Google Scholar

    [36]

    Zhang D W, Chen Y L, Zhang G Q, Lang L J, Li Z, Zhu S L 2020 Phys. Rev. B 101 235150Google Scholar

    [37]

    Xu Z C, Zhou Z Y, Cheng E H, Lang L J, Zhu S L 2022 Sci. China: Phys., Mech. Astron. 65 283011Google Scholar

    [38]

    Shen H T, Zhen B, Fu L 2018 Phys. Rev. Lett. 120 146402Google Scholar

    [39]

    Yao S Y, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [40]

    Zhang D W, Tang L Z, Lang L J, Yan H, Zhu S L 2020 Sci. China: Phys., Mech. Astron. 63 267062Google Scholar

    [41]

    Tang L Z, Zhang L F, Zhang G Q, Zhang D W 2020 Phys. Rev. A 101 063612Google Scholar

    [42]

    Jiang H, Lang L J, Yang C, Zhu S L, Chen S 2019 Phys. Rev. B 100 054301Google Scholar

    [43]

    Budich J C, Bergholtz E J 2020 Phys. Rev. Lett. 125 180403Google Scholar

    [44]

    Koch F, Budich J C 2022 Phys. Rev. Res. 4 013113Google Scholar

    [45]

    Pati A K, Singh U, Sinha U 2015 Phys. Rev. A 92 052120Google Scholar

    [46]

    Heeger A J, Kivelson S, Schrieffer J R, Su W P 1988 Rev. Mod. Phys. 60 781Google Scholar

    [47]

    Yin C H, Jiang H, Li L H, Lü R, Chen S 2018 Phys. Rev. A 97 052115Google Scholar

    [48]

    Zhu B G, Lü R, Chen S 2014 Phys. Rev. A 89 062102Google Scholar

    [49]

    Yuce C 2018 Phys. Rev. A 97 042118Google Scholar

    [50]

    Li C, Zhang G, Zhang X Z, Song Z 2014 Phys. Rev. A 90 012103Google Scholar

    [51]

    Guo Z X, Yu X J, Hu X D, Li Z 2022 Phys. Rev. A 105 053311Google Scholar

    [52]

    Jordan P, Wigner E 1928 Z. Physik 47 631Google Scholar

    [53]

    Qi X L, Wu Y S, Zhang S C 2006 Phys. Rev. B 74 085308Google Scholar

    [54]

    Kawabata K, Shiozaki K, Ueda M 2018 Phys. Rev. B 98 165148Google Scholar

  • [1] 任亚雷, 周涛. 运动参考系中量子Fisher信息. 物理学报, 2024, 73(5): 050601. doi: 10.7498/aps.73.20231394
    [2] 李岩, 任志红. 多量子比特WV纠缠态在Lipkin-Meshkov-Glick模型下的量子Fisher信息. 物理学报, 2023, 72(22): 220302. doi: 10.7498/aps.72.20231179
    [3] 姚杰, 赵爱迪. 表面单分子量子态的探测和调控研究进展. 物理学报, 2022, 71(6): 060701. doi: 10.7498/aps.71.20212324
    [4] 张禧征, 王鹏, 张坤亮, 杨学敏, 宋智. 非厄米临界动力学及其在量子多体系统中的应用. 物理学报, 2022, 71(17): 174501. doi: 10.7498/aps.71.20220914
    [5] 高雪儿, 李代莉, 刘志航, 郑超. 非厄米系统的量子模拟新进展. 物理学报, 2022, 71(24): 240303. doi: 10.7498/aps.71.20221825
    [6] 牛明丽, 王月明, 李志坚. 基于量子Fisher信息的耗散相互作用光-物质耦合常数的估计. 物理学报, 2022, 71(9): 090601. doi: 10.7498/aps.71.20212029
    [7] 武莹, 李锦芳, 刘金明. 基于部分测量增强量子隐形传态过程的量子Fisher信息. 物理学报, 2018, 67(14): 140304. doi: 10.7498/aps.67.20180330
    [8] 郭红. Bose-Hubbard模型中系统初态对量子关联的影响. 物理学报, 2015, 64(22): 220301. doi: 10.7498/aps.64.220301
    [9] 黄宇, 刘玉峰, 彭志敏, 丁艳军. 基于量子并行粒子群优化算法的分数阶混沌系统参数估计. 物理学报, 2015, 64(3): 030505. doi: 10.7498/aps.64.030505
    [10] 王柳, 何文平, 万仕全, 廖乐健, 何涛. 混沌系统中参数估计的演化建模方法. 物理学报, 2014, 63(1): 019203. doi: 10.7498/aps.63.019203
    [11] 常锋, 王晓茜, 盖永杰, 严冬, 宋立军. 光与物质相互作用系统中的量子Fisher信息和自旋压缩. 物理学报, 2014, 63(17): 170302. doi: 10.7498/aps.63.170302
    [12] 林剑, 许力. 基于混合生物地理优化的混沌系统参数估计. 物理学报, 2013, 62(3): 030505. doi: 10.7498/aps.62.030505
    [13] 龙文, 焦建军. 基于混合交叉进化算法的混沌系统参数估计. 物理学报, 2012, 61(11): 110507. doi: 10.7498/aps.61.110507
    [14] 曹小群, 宋君强, 张卫民, 赵军, 张理论. 基于变分方法的混沌系统参数估计. 物理学报, 2011, 60(7): 070511. doi: 10.7498/aps.60.070511
    [15] 宋立军, 严冬, 刘烨. 玻色-爱因斯坦凝聚系统的量子Fisher信息与混沌. 物理学报, 2011, 60(12): 120302. doi: 10.7498/aps.60.120302
    [16] 王钧炎, 黄德先. 基于混合差分进化算法的混沌系统参数估计. 物理学报, 2008, 57(5): 2755-2760. doi: 10.7498/aps.57.2755
    [17] 李丽香, 彭海朋, 杨义先, 王向东. 基于混沌蚂蚁群算法的Lorenz混沌系统的参数估计. 物理学报, 2007, 56(1): 51-55. doi: 10.7498/aps.56.51
    [18] 贾飞蕾, 徐 伟, 都 林. 参数未知的不同阶数混沌系统广义同步及参数估计. 物理学报, 2007, 56(10): 5640-5647. doi: 10.7498/aps.56.5640
    [19] 高 飞, 童恒庆. 基于改进粒子群优化算法的混沌系统参数估计方法. 物理学报, 2006, 55(2): 577-582. doi: 10.7498/aps.55.577
    [20] 戴栋, 马西奎, 李富才, 尤勇. 一种基于遗传算法的混沌系统参数估计方法. 物理学报, 2002, 51(11): 2459-2462. doi: 10.7498/aps.51.2459
计量
  • 文章访问数:  3498
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-26
  • 修回日期:  2023-07-07
  • 上网日期:  2023-07-18
  • 刊出日期:  2023-10-20

/

返回文章
返回