搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

点间隧穿耦合对四能级三量子点电磁感应透明介质孤子动力学的影响

王胤 王壬颍 陈桥 邓永和

引用本文:
Citation:

点间隧穿耦合对四能级三量子点电磁感应透明介质孤子动力学的影响

王胤, 王壬颍, 陈桥, 邓永和

Effect of inter-dot tunneling coupling on soliton dynamical behaviors in four-level triple quantum dot EIT medium

Wang Yin, Wang Ren-Ying, Chen Qiao, Deng Yong-He
PDF
HTML
导出引用
  • 利用概率幅变分近似结合多重尺度法, 研究了探测光在两边产生点间隧道耦合的非对称阵列型三量子点电磁诱导透明介质的传播性质. 结果表明, 由于系统的色散效应和点间隧穿耦合产生的非线性效应相平衡, 系统能形成稳定传播的超低速时间光孤子. 有趣的是, 仅开启一边的点间隧穿耦合(即另一边关闭), 随着点间隧穿耦合强度的增加, 光孤子的速度呈现出先增大后减小的变化趋势, 但光孤子的幅度却一直增大. 两边两个点间隧穿耦合强度均开启后, 随着点间隧穿强度逐渐的增大, 光孤子的幅度随着点间隧穿强度的增大会出现逐渐减小, 直到出现一个拐点后才迅速增大; 而光孤子的速度相比较于单个隧穿强度的影响会明显降低, 且出现停滞的现象. 这些结果不但揭示出点间隧道耦合对三量子点电磁感应透明介质光孤子的动力学有着重要影响, 而且还预言在半导体量子点器件中可利用点间隧道耦合调节其光孤子传输的幅度.
    Soliton, which can travel over long distance without attenuation or shape change due to the balance of the interplay between dispersion (or diffraction) and nonlinearity in nonlinear medium, becomes a good information carrier in quantum information processing and transmission. Up to now, the study on the optical solitons mainly focuses on ultra-cold atomic electromagnetic induction transparency (EIT) medium. This is mainly because ultra-cold atomic system can generate strong nonlinear effect under low light excitation. However, for the practical application, it is a big challenge to control accurately the optical soliton dynamics in the atomic EIT medium due to its low temperature (which approaches to absolute zero) and rarefaction. Fortunately, with the maturity of semiconductor quantum production technology, quantum dots have extensive application prospect in quantum information processing and transmission. So, in the paper, we study the optical soliton dynamics in a four-level asymmetric array-type three-quantum-dot EIT medium.Based on the current experimental results, we first propose a four-level asymmetric array-type three-quantum-dot EIT model. Subsequently, by using amplitude variable approach combined with multi-scale method, we study analytically the propagation of a probe pulse in this system. It is shown that when one (the another) inter-dot tunneling coupling is turned on (off), only a single transparency window appears in the center range of the probe field detuning. Only if two inter-dot tunneling couplings are turned on will two transparent windows be distributed on both sides of the central region of the probe field detuning. And the width of the single transparent window or the widths of two transparent windows become wider with the strength of the inter-dot tunneling coupling increasing. For the nonlinear case, by choosing appropriate parameters in the area of the transparency window, the stable propagation of soliton can be realized. Interestingly, we find that the strength of the inter-dot tunneling coupling has an important effect on the soliton dynamic behaviors. In the case that one (the another) inter-dot tunneling coupling is turned on (off), with the increase of strength of the inter-dot tunneling coupling, the velocity of the soliton exhibits a trend of first increasing and then decreasing, and the amplitude of the soliton presents a increasing trend for ever. For the case that two inter-dot tunneling couplings are turned on, with the strength of the two inter-dot tunneling coupling increasing, the velocity of the soliton presents a decreasing trend for ever, while the amplitude of the soliton exhibits a trend of first decreasing and then increasing. Thus, the amplitude modulation effect of optical soliton can be realized in semiconductor quantum dot devices.
      通信作者: 王胤, 21112@hnie.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11832016)、湖南省自然科学基金(批准号: 2020JJ4240, 2022JJ50115)和湖南工程学院博士启动基金(批准号: 22RC018)资助的课题.
      Corresponding author: Wang Yin, 21112@hnie.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11832016), the Hunan Provincial Natural Science Foundation of China (Grant Nos. 2020JJ4240, 2022JJ50115), and the Doctoral Startup Foundation of Hunan Institute of Engineering, China (Grant No. 22RC018).
    [1]

    Wang Y, Ding J W, Wang D L, et al. 2020 Chaos 30 123133Google Scholar

    [2]

    Song W W, Li Q Y, Li Z D, et al. 2010 Chin. Phys. B 19 070503Google Scholar

    [3]

    张晓斐, 张培, 陈光平, 董彪, 谭仁兵, 张首刚 2015 物理学报 64 060302Google Scholar

    Zhang X F, Zhang P, Chen G P, Dong B, Tan R B, Zhang S G 2015 Acta Phys. Sin. 64 060302Google Scholar

    [4]

    Zhang X F, Zhang P, He W Q, Lin X X 2011 Chin. Phys. B 20 020307Google Scholar

    [5]

    Li Z D, Guo Q Q, Guo Y, et al. 2021 Chin. Phys. B 30 107506Google Scholar

    [6]

    李再东, 郭奇奇 2020 物理学报 69 017501Google Scholar

    Li Z D, Guo Q Q 2020 Acta Phys. Sin. 69 017501Google Scholar

    [7]

    Guo H, Qiu X, Ma Y, et al. 2021 Chin. Phys. B 30 060310Google Scholar

    [8]

    Li Z D, Wang Y Y, He P B 2019 Chin. Phys. B 28 010504Google Scholar

    [9]

    李吉, 刘伍明 2018 物理学报 67 110302Google Scholar

    Li J, Liu W M 2018 Acta Phys. Sin. 67 110302Google Scholar

    [10]

    Xu D T, Chen Z M, Huang G X 2017 Opt. Express 25 19094Google Scholar

    [11]

    Hang C, Huang G X 2018 Phys. Rev. A 98 043840Google Scholar

    [12]

    Bai Z Y, Hang C, Huang G X 2013 Chin. Opt. Lett. 11 012701Google Scholar

    [13]

    Zhou S J, Wang D L, Dong Y Y, Bai Z Y, Ding J W 2022 Phys. Lett. A 448 128320Google Scholar

    [14]

    邓瑞婕, 闫智辉, 贾晓军 2017 物理学报 66 074201Google Scholar

    Deng R J, Yan Z H, Jia X J 2017 Acta. Phys. Sin. 66 074201Google Scholar

    [15]

    Liu J, Jing H, Ge M L 2004 Phys. Rev. A 70 55802Google Scholar

    [16]

    Si L G, Yang W X, Yang X X 2009 J. Opt. Soc. Am. B: Opt. Phys. 26 478

    [17]

    Si L G, Yang W X, Lü X Y, Li J H, Yang X X 2009 Eur. Phys. J. D 55 161Google Scholar

    [18]

    Si L G, Yang W X, Liu J B, Li J H, Yang X X 2009 Opt. Express 17 7771Google Scholar

    [19]

    Wu Y 2005 Phys. Rev. A 71 053820Google Scholar

    [20]

    Wu Y, Deng L 2004 Phys. Rev. Lett. 93 143904Google Scholar

    [21]

    Wu Y, Deng L 2004 Opt. Lett. 29 2064Google Scholar

    [22]

    Dong Y Y, Wang D L, Wang Y, Ding J W 2018 Phys. Lett. A 382 2006Google Scholar

    [23]

    Chen Y, Chen Z M, Huang G X 2015 Phys. Rev. A 91 023820Google Scholar

    [24]

    Xu D T, Bai Z Y, Huang G X 2016 Phys. Rev. A 94 063857Google Scholar

    [25]

    Chen Y, Bai Z Y, Huang G X 2014 Phys. Rev. A 89 023835Google Scholar

    [26]

    Xu D T, Hang C, Huang G X 2018 Phys. Rev. A 98 043848Google Scholar

    [27]

    Chong S, Huang G X 2019 Phys. Rev. A 99 043821Google Scholar

    [28]

    Chen Z M, Bai Z Y, Li H J, Hang C, Huang G X 2015 Sci. Rep. 5 8211Google Scholar

    [29]

    Lodahl P, Mahmoodian S, Stobbe S 2015 Rev. Mod. Phys. 87 347Google Scholar

    [30]

    Liu H C, Gao M, Mccaffrey J, Wasilewski Z R, Fafard S 2001 Appl. Phys. Lett. 78 79Google Scholar

    [31]

    Santori C, Pelton M, Solomon G, Dale Y, Yamamoto Y 2001 Phys. Rev. Lett. 86 1502Google Scholar

    [32]

    Brus L E 1986 J. Phys. Chem. 90 2555Google Scholar

    [33]

    Marcinkevicius S, Gushterov A, Reithmaier J P 2008 Appl. Phys. Lett. 92 041113Google Scholar

    [34]

    Yang W X, Chen A X, Lee R K, Wu Y 2011 Phys. Rev. A 84 013835Google Scholar

    [35]

    佘彦超, 张蔚曦, 王登龙 2011 物理学报 60 064205Google Scholar

    She Y C, Zhang W X, Wang D L 2011 Acta. Phys. Sin. 60 064205Google Scholar

    [36]

    Zeng K H, Wang D L, She Y C, Luo X Q 2013 Eur. Phys. J. D 67 221Google Scholar

    [37]

    曾宽宏, 王登龙, 佘彦超, 张蔚曦 2013 物理学报 62 147801Google Scholar

    Zeng K H, Wang D L, She Y C, Zhang W X 2013 Acta. Phys. Sin. 62 147801Google Scholar

    [38]

    Xiang Z H, Huwer J, Szymanska J S, et al. 2020 Commun. Phys. 3 121Google Scholar

    [39]

    Childress L, Sørensen A S, Lukin M D 2004 Phys. Rev. A 69 042302Google Scholar

    [40]

    Ordonez G, Na K, Kim S 2006 Phys. Rev. A 73 022113Google Scholar

    [41]

    唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国 2017 物理学报 66 034202Google Scholar

    Tang H, Wang D L, Zhang W X, Ding J W, Xiao S G 2017 Acta. Phys. Sin. 66 034202Google Scholar

    [42]

    杨璇, 王胤, 王登龙, 丁建文 2020 物理学报 69 174203Google Scholar

    Yang X, Wang Y, Wang D L, Ding J W 2020 Acta Phys. Sin. 69 174203Google Scholar

    [43]

    Michael S, Chow W W, Schneider H C 2013 Phys. Rev. B 88 125305Google Scholar

    [44]

    王胤, 周驷杰, 陈桥, 邓永和 2023 物理学报 72 084204Google Scholar

    Wang Y, Zhou S J, Chen Q, Deng Y H 2023 Acta. Phys. Sin. 72 084204Google Scholar

    [45]

    Wang Y, Zhou S J, Deng Y H, Chen Q 2023 Chin. Phys. B. 32 054203Google Scholar

    [46]

    She Y C, Zheng X J, Wang D L, et al. 2013 Opt. Express 21 17392Google Scholar

    [47]

    Wolters J, Buser G, Horsley A, Béguin L, Jöckel A, Jahn J P, Warburton R J, Treutlein P 2017 Phys. Rev. Lett. 119 060502Google Scholar

    [48]

    Waugh F R, Berry M J, Mar D J, Westervelt R M, Campman K L, Gossard A C 1995 Phys. Rev. Lett. 75 705Google Scholar

    [49]

    Krause B, Metzger T H, Rastelli A, Songmuang R, Kiravittaya S, Schmidt O G 2005 Phys. Rev. B 72 085339Google Scholar

    [50]

    Harris S E, Field J E, Imamoglu A. 1990 Phys. Rev. Lett. 64 1107Google Scholar

    [51]

    Tian S C, Wan R G, Tong C Z, Ning Y Q 2014 J. Opt. Soc. Am. B: Opt. Phys. 31 1436Google Scholar

    [52]

    Luo X Q, Li Z Z, Jing J, et al. 2018 Sci. Rep. 8 3107Google Scholar

    [53]

    Luo X Q, Li Z Z, Li T F, et al. 2018 Opt. Express 26 32585Google Scholar

  • 图 1  四能级非对称阵列型三量子点电磁感应透明介质能级结构示意图

    Fig. 1.  Energy level structure diagram of a four-level asymmetric array-type three quantum dots electromagnetically induced transparent medium.

    图 2  关闭左点间隧穿耦合 ($ {\text{T}}{{\text{e}}_1} = 0 $) 仅开启右点间隧穿耦合情况下, 线性吸收系数$ {K}_{0{\mathrm{i}}} $随失谐$ {{{\varDelta }}}_{{\mathrm{p}}} $的变化情况. 其他参数: $ {\gamma }_{10}=3.3\;\text{μeV}$, $ {\gamma }_{20}={\gamma }_{30}={10}^{-4}{\gamma }_{10} $, $ -\hslash {\omega }_{12}= $$ \hslash {\omega }_{13}=10\;\;\text{μeV} $, $ {\kappa }_{01}=1976\;{{\mathrm{cm}}}^{-1}{\cdot}\text{μeV} $

    Fig. 2.  In the case that the left (right) inter-dot tunneling coupling is turned off (on), the linear absorption coefficient $ {K}_{0{\mathrm{i}}} $ as a function of the detuning $ {{{\varDelta }}}_{{\mathrm{p}}} $. Other parameters: $ {\gamma }_{10}=3.3\;\;\text{μeV}$, $ {\gamma }_{20}={\gamma }_{30}={10}^{-4}{\gamma }_{10} $, $ -\hslash {\omega }_{12}= \hslash {\omega }_{13}= $$ 10\;\;\text{μeV} $, and $ {\kappa }_{01}=1976\;{{\mathrm{cm}}}^{-1}{\cdot}\text{μeV} $.

    图 3  关闭右点间隧穿耦合 (${\text{T}}{{\text{e}}_2} = 0$) 仅开启左点间隧穿耦合情况下, 线性吸收系数$ {K}_{0{\mathrm{i}}} $随失谐$ {{{\varDelta }}}_{{\mathrm{p}}} $的变化情况. 图中所使用的其他参数与图2一致

    Fig. 3.  In the case that the left (right) inter-dot tunneling coupling is turned on (off), the linear absorption coefficient $ {K}_{0{\mathrm{i}}} $ as a function of the detuning $ {{{\varDelta }}}_{{\mathrm{p}}} $. Other parameters used are the same as the Fig. 2.

    图 4  左、右两边两个点间隧穿耦合均开启情况下, 线性吸收系数$ {K}_{0{\mathrm{i}}} $随失谐$ {{{\varDelta }}}_{{\mathrm{p}}} $的变化情况. 图中所使用的其他参数与图2一致

    Fig. 4.  Under both the left and right inter-dot tunneling coupling are turned on, the linear absorption coefficient $ {K}_{0{\mathrm{i}}} $ as a function of the detuning $ {{{\varDelta }}}_{{\mathrm{p}}} $. Other parameters used are the same as the Fig. 2.

    图 5  单点间隧穿耦合下三量子点EIT介质中光孤子的稳定性分析($ {\text{T}}{{\text{e}}_1} = 1\;{\text{meV}} $, $ {\text{T}}{{\text{e}}_2} = 0 $)

    Fig. 5.  Stability analysis of optical solitons in the three quantum dot EIT medium under the single inter-dot tunneling coupling effect ($ {\text{T}}{{\text{e}}_1} = 1\;{\text{meV}} $, $ {\text{T}}{{\text{e}}_2} = 0 $).

    图 8  不同右点间隧穿强度下, 孤子的幅度随左点间隧穿强度Te1的变化

    Fig. 8.  Amplitude of the solitons as a function of the strength Te1 of the left inter-dot coupling with the different strength of the right inter-dot tunneling coupling.

    图 6  双点间隧穿耦合下三量子点EIT介质中光孤子的稳定性分析($ {\text{T}}{{\text{e}}_1} = 1\;{\text{meV}} $, $ {\text{T}}{{\text{e}}_2} = 0.5\;{\text{meV}} $)

    Fig. 6.  Stability analysis of optical solitons in three quantum dot EIT medium under the two single inter-dot tunneling coupling effect ($ {\mathrm{Te}}_1 = 1\;{\text{meV}} $, $ {\text{T}}{{\text{e}}_2} = 0.5\;{\text{meV}} $).

    图 7  不同右点间隧穿强度下孤子的群速度随左点间隧穿强度Te1的变化

    Fig. 7.  Group velocity of the solitons as a function of the strength Te1 of the left inter-dot coupling with the different strength of the right inter-dot tunneling coupling.

  • [1]

    Wang Y, Ding J W, Wang D L, et al. 2020 Chaos 30 123133Google Scholar

    [2]

    Song W W, Li Q Y, Li Z D, et al. 2010 Chin. Phys. B 19 070503Google Scholar

    [3]

    张晓斐, 张培, 陈光平, 董彪, 谭仁兵, 张首刚 2015 物理学报 64 060302Google Scholar

    Zhang X F, Zhang P, Chen G P, Dong B, Tan R B, Zhang S G 2015 Acta Phys. Sin. 64 060302Google Scholar

    [4]

    Zhang X F, Zhang P, He W Q, Lin X X 2011 Chin. Phys. B 20 020307Google Scholar

    [5]

    Li Z D, Guo Q Q, Guo Y, et al. 2021 Chin. Phys. B 30 107506Google Scholar

    [6]

    李再东, 郭奇奇 2020 物理学报 69 017501Google Scholar

    Li Z D, Guo Q Q 2020 Acta Phys. Sin. 69 017501Google Scholar

    [7]

    Guo H, Qiu X, Ma Y, et al. 2021 Chin. Phys. B 30 060310Google Scholar

    [8]

    Li Z D, Wang Y Y, He P B 2019 Chin. Phys. B 28 010504Google Scholar

    [9]

    李吉, 刘伍明 2018 物理学报 67 110302Google Scholar

    Li J, Liu W M 2018 Acta Phys. Sin. 67 110302Google Scholar

    [10]

    Xu D T, Chen Z M, Huang G X 2017 Opt. Express 25 19094Google Scholar

    [11]

    Hang C, Huang G X 2018 Phys. Rev. A 98 043840Google Scholar

    [12]

    Bai Z Y, Hang C, Huang G X 2013 Chin. Opt. Lett. 11 012701Google Scholar

    [13]

    Zhou S J, Wang D L, Dong Y Y, Bai Z Y, Ding J W 2022 Phys. Lett. A 448 128320Google Scholar

    [14]

    邓瑞婕, 闫智辉, 贾晓军 2017 物理学报 66 074201Google Scholar

    Deng R J, Yan Z H, Jia X J 2017 Acta. Phys. Sin. 66 074201Google Scholar

    [15]

    Liu J, Jing H, Ge M L 2004 Phys. Rev. A 70 55802Google Scholar

    [16]

    Si L G, Yang W X, Yang X X 2009 J. Opt. Soc. Am. B: Opt. Phys. 26 478

    [17]

    Si L G, Yang W X, Lü X Y, Li J H, Yang X X 2009 Eur. Phys. J. D 55 161Google Scholar

    [18]

    Si L G, Yang W X, Liu J B, Li J H, Yang X X 2009 Opt. Express 17 7771Google Scholar

    [19]

    Wu Y 2005 Phys. Rev. A 71 053820Google Scholar

    [20]

    Wu Y, Deng L 2004 Phys. Rev. Lett. 93 143904Google Scholar

    [21]

    Wu Y, Deng L 2004 Opt. Lett. 29 2064Google Scholar

    [22]

    Dong Y Y, Wang D L, Wang Y, Ding J W 2018 Phys. Lett. A 382 2006Google Scholar

    [23]

    Chen Y, Chen Z M, Huang G X 2015 Phys. Rev. A 91 023820Google Scholar

    [24]

    Xu D T, Bai Z Y, Huang G X 2016 Phys. Rev. A 94 063857Google Scholar

    [25]

    Chen Y, Bai Z Y, Huang G X 2014 Phys. Rev. A 89 023835Google Scholar

    [26]

    Xu D T, Hang C, Huang G X 2018 Phys. Rev. A 98 043848Google Scholar

    [27]

    Chong S, Huang G X 2019 Phys. Rev. A 99 043821Google Scholar

    [28]

    Chen Z M, Bai Z Y, Li H J, Hang C, Huang G X 2015 Sci. Rep. 5 8211Google Scholar

    [29]

    Lodahl P, Mahmoodian S, Stobbe S 2015 Rev. Mod. Phys. 87 347Google Scholar

    [30]

    Liu H C, Gao M, Mccaffrey J, Wasilewski Z R, Fafard S 2001 Appl. Phys. Lett. 78 79Google Scholar

    [31]

    Santori C, Pelton M, Solomon G, Dale Y, Yamamoto Y 2001 Phys. Rev. Lett. 86 1502Google Scholar

    [32]

    Brus L E 1986 J. Phys. Chem. 90 2555Google Scholar

    [33]

    Marcinkevicius S, Gushterov A, Reithmaier J P 2008 Appl. Phys. Lett. 92 041113Google Scholar

    [34]

    Yang W X, Chen A X, Lee R K, Wu Y 2011 Phys. Rev. A 84 013835Google Scholar

    [35]

    佘彦超, 张蔚曦, 王登龙 2011 物理学报 60 064205Google Scholar

    She Y C, Zhang W X, Wang D L 2011 Acta. Phys. Sin. 60 064205Google Scholar

    [36]

    Zeng K H, Wang D L, She Y C, Luo X Q 2013 Eur. Phys. J. D 67 221Google Scholar

    [37]

    曾宽宏, 王登龙, 佘彦超, 张蔚曦 2013 物理学报 62 147801Google Scholar

    Zeng K H, Wang D L, She Y C, Zhang W X 2013 Acta. Phys. Sin. 62 147801Google Scholar

    [38]

    Xiang Z H, Huwer J, Szymanska J S, et al. 2020 Commun. Phys. 3 121Google Scholar

    [39]

    Childress L, Sørensen A S, Lukin M D 2004 Phys. Rev. A 69 042302Google Scholar

    [40]

    Ordonez G, Na K, Kim S 2006 Phys. Rev. A 73 022113Google Scholar

    [41]

    唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国 2017 物理学报 66 034202Google Scholar

    Tang H, Wang D L, Zhang W X, Ding J W, Xiao S G 2017 Acta. Phys. Sin. 66 034202Google Scholar

    [42]

    杨璇, 王胤, 王登龙, 丁建文 2020 物理学报 69 174203Google Scholar

    Yang X, Wang Y, Wang D L, Ding J W 2020 Acta Phys. Sin. 69 174203Google Scholar

    [43]

    Michael S, Chow W W, Schneider H C 2013 Phys. Rev. B 88 125305Google Scholar

    [44]

    王胤, 周驷杰, 陈桥, 邓永和 2023 物理学报 72 084204Google Scholar

    Wang Y, Zhou S J, Chen Q, Deng Y H 2023 Acta. Phys. Sin. 72 084204Google Scholar

    [45]

    Wang Y, Zhou S J, Deng Y H, Chen Q 2023 Chin. Phys. B. 32 054203Google Scholar

    [46]

    She Y C, Zheng X J, Wang D L, et al. 2013 Opt. Express 21 17392Google Scholar

    [47]

    Wolters J, Buser G, Horsley A, Béguin L, Jöckel A, Jahn J P, Warburton R J, Treutlein P 2017 Phys. Rev. Lett. 119 060502Google Scholar

    [48]

    Waugh F R, Berry M J, Mar D J, Westervelt R M, Campman K L, Gossard A C 1995 Phys. Rev. Lett. 75 705Google Scholar

    [49]

    Krause B, Metzger T H, Rastelli A, Songmuang R, Kiravittaya S, Schmidt O G 2005 Phys. Rev. B 72 085339Google Scholar

    [50]

    Harris S E, Field J E, Imamoglu A. 1990 Phys. Rev. Lett. 64 1107Google Scholar

    [51]

    Tian S C, Wan R G, Tong C Z, Ning Y Q 2014 J. Opt. Soc. Am. B: Opt. Phys. 31 1436Google Scholar

    [52]

    Luo X Q, Li Z Z, Jing J, et al. 2018 Sci. Rep. 8 3107Google Scholar

    [53]

    Luo X Q, Li Z Z, Li T F, et al. 2018 Opt. Express 26 32585Google Scholar

  • [1] 韩玉龙, 刘邦, 张侃, 孙金芳, 孙辉, 丁冬生. 射频电场缀饰下铯Rydberg原子的电磁感应透明光谱. 物理学报, 2024, 73(11): 113201. doi: 10.7498/aps.73.20240355
    [2] 丁大为, 王谋媛, 王金, 杨宗立, 牛炎, 王威. 电磁感应下分数阶神经网络动力学行为分析及应用. 物理学报, 2024, 73(10): 100502. doi: 10.7498/aps.73.20231792
    [3] 陈雪丽, 夏露源, 王智慧, 段利霞. 电磁感应驱动下闭环呼吸控制系统中的混合节律及其动力学分析. 物理学报, 2024, 73(18): 180502. doi: 10.7498/aps.73.20240847
    [4] 夏刚, 张亚鹏, 汤婧雯, 李春燕, 吴春旺, 张杰, 周艳丽. 电磁感应透明条件下里德伯原子系统的亚稳动力学. 物理学报, 2024, 73(10): 104203. doi: 10.7498/aps.73.20240233
    [5] 刘建基, 刘甲琛, 张国权. 基于电磁感应透明效应的光学图像加减. 物理学报, 2023, 72(9): 094201. doi: 10.7498/aps.72.20221560
    [6] 王胤, 周驷杰, 陈桥, 邓永和. 能级构型对InAs/GaAs量子点电磁感应透明介质中光孤子存储的影响. 物理学报, 2023, 72(8): 084204. doi: 10.7498/aps.72.20221965
    [7] 裴丽娅, 郑世阳, 牛金艳. 基于调控原子相干的Λ-型电磁感应透明与吸收. 物理学报, 2022, 71(22): 224201. doi: 10.7498/aps.71.20220950
    [8] 杨璇, 王胤, 王登龙, 丁建文. 点间隧穿调控五能级M型三量子点电磁感应透明介质中的孤子碰撞性质. 物理学报, 2020, 69(17): 174203. doi: 10.7498/aps.69.20200141
    [9] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位. 物理学报, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [10] 唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国. 纵波光学声子耦合对级联型电磁感应透明半导体量子阱中暗-亮光孤子类型的调控. 物理学报, 2017, 66(3): 034202. doi: 10.7498/aps.66.034202
    [11] 陈秋成. 半导体三量子点电磁感应透明介质中的非线性法拉第偏转. 物理学报, 2016, 65(24): 247801. doi: 10.7498/aps.65.247801
    [12] 王梦, 白金海, 裴丽娅, 芦小刚, 高艳磊, 王如泉, 吴令安, 杨世平, 庞兆广, 傅盘铭, 左战春. 铷原子耦合光频率近共振时的电磁感应透明. 物理学报, 2015, 64(15): 154208. doi: 10.7498/aps.64.154208
    [13] 赵虎, 李铁夫, 刘建设, 陈炜. 基于超导量子比特的电磁感应透明研究进展. 物理学报, 2012, 61(15): 154214. doi: 10.7498/aps.61.154214
    [14] 佘彦超, 张蔚曦, 王登龙. 电磁感应透明介质中非线性法拉第偏转. 物理学报, 2011, 60(6): 064205. doi: 10.7498/aps.60.064205
    [15] 佘彦超, 王登龙, 丁建文. 电磁感应透明介质中的弱光空间暗孤子环. 物理学报, 2009, 58(5): 3198-3202. doi: 10.7498/aps.58.3198
    [16] 庄 飞, 沈建其, 叶 军. 调控电磁感应透明气体折射率实现可控光子带隙结构. 物理学报, 2007, 56(1): 541-545. doi: 10.7498/aps.56.541
    [17] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究. 物理学报, 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [18] 赵建明, 赵延霆, 黄涛, 肖连团, 贾锁堂. 双抽运光作用电磁感应透明的实验研究. 物理学报, 2004, 53(4): 1023-1026. doi: 10.7498/aps.53.1023
    [19] 刘正东, 武 强. 被三个耦合场驱动的四能级原子的电磁感应透明. 物理学报, 2004, 53(9): 2970-2973. doi: 10.7498/aps.53.2970
    [20] 杨苏辉, 张汉壮, 国秀珍, 王 冬, 高锦岳. 激光场的线宽对双光子电磁感应光透明及共振吸收增强的影响. 物理学报, 1998, 47(6): 931-937. doi: 10.7498/aps.47.931
计量
  • 文章访问数:  1681
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-23
  • 修回日期:  2023-11-01
  • 上网日期:  2023-11-10
  • 刊出日期:  2024-02-20

/

返回文章
返回