搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pr, Yb, Ho:GdScO3晶体生长及光谱性能

孙贵花 张庆礼 罗建乔 王小飞 谷长江

引用本文:
Citation:

Pr, Yb, Ho:GdScO3晶体生长及光谱性能

孙贵花, 张庆礼, 罗建乔, 王小飞, 谷长江

Growth and spectral properties of Pr, Yb, Ho:GdScO3 crystal

Sun Gui-Hua, Zhang Qing-Li, Luo Jian-Qiao, Wang Xiao-Fei, Gu Chang-Jiang
PDF
HTML
导出引用
  • 2.7—3.0 μm波段激光在很多领域具有重要应用, 为探索和发展该波段新型晶体材料, 本文采用提拉法生长出Pr, Yb, Ho:GdScO3晶体, 通过共掺入Pr3+离子以达到衰减Ho3+:5I7能级寿命的目的. 采用X射线衍射测试得到了晶体的粉末衍射数据, 测量了拉曼光谱, 并对晶体的拉曼振动峰进行指认, 对Pr, Yb, Ho:GdScO3晶体的透过光谱、发射光谱和荧光寿命进行表征. Yb3+的最强吸收峰在966 nm, 吸收峰半峰宽为90 nm; 2.7—3.0 μm波段最强发射峰在2850 nm, 半峰宽为70 nm; Ho3+:5I65I7能级寿命分别为1094 µs和56 µs. 与Yb, Ho:GdScO3晶体相比, Yb3+的吸收峰和2.7—3.0 μm的发射峰半峰宽明显展宽, 同时下能级寿命显著减小, 计算表明Ho3+:5I7与Pr3+:3F2+3H6能级之间能实现高效的能量传递. 以上结果表明Pr, Yb, Ho:GdScO3晶体是性能更优异的2.7—3.0 μm波段激光材料.
    In order to explore and develop new crystal materials in the 2.7–3.0 μm band, Pr, Yb, Ho:GdScO3 crystal are successfully grown by the Czochralski method for the first time. X-ray diffraction measurement is performed to obtain powder diffraction data. Raman spectra aree measured and the vibration peaks are identified. The transmission spectrum, emission spectrum and fluorescence lifetime of Pr, Yb, Ho:GdScO3 crystal are also characterized. The center of the strongest absorption band is at 966 nm with a half-peak width of 90 nm, which comes from the transition of Yb3+:2F7/22F5/2. The absorption cross section of Yb3+ is calculated and the values at 966, 973, 985 nm are 0.62×10–20, 0.60×10–20 and 0.58×10–20 cm2 respectively. The maximum emission peak is at 2850 nm and the half-peak width is 70 nm, the lifetimes of Ho3+:5I6 and 5I7 are measured to be 1094 and 56 μs respectively, and the emission cross section at 2850 and 2935 nm are calculated to be 3.6×10–20 cm2 and 1.21×10–20 cm2, respectively. Comparing with Yb, Ho: GdScO3 crystal, the absorption peak of Yb3+ and the emission peak are both broadened, which are related to the increase of crystal disorder. The lifetime of the lower energy level decreases significantly. Furthermore, the energy transfer mechanism between $\rm Ho^{3+} $ and Pr3+ is analyzed, and the energy transfer efficiency between Ho3+:5I7 and Pr3+:3F2+3H6 is calculated to be 99%, which is higher than those in other materials. All the results show that Pr, Yb, Ho:GdScO3 crystal is an excellent 2.7–3 μm laser material, and is easier to achieve laser output than Yb, Ho:GdScO3 crystal.
      通信作者: 孙贵花, ghsun@aiofm.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFB3605700)和先进激光技术安徽省实验室主任基金(批准号: AHL 20220ZR04)资助的课题.
      Corresponding author: Sun Gui-Hua, ghsun@aiofm.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB3605700) and the Open Project of Advanced Laser Technology Laboratory of Anhui Province, China (Grant No. AHL 20220ZR04).
    [1]

    Hu D, Dong J, Tian J, Wang W D, Wang Q G, Xue Y Y, Xu X D, Xu J 2021 J. Lumin. 238 118243Google Scholar

    [2]

    Arsrnev P, Binert K, Svirridova R 1972 Phys. Status Solidi 9 103Google Scholar

    [3]

    Yamaji A, Kochurikhin V, Fujimoto Y, Futami Y, Yanagida T, Yokota Y, Kurosawa S, Yoshikawa A 2012 Phys. Status Solidi C 9 2267Google Scholar

    [4]

    Peng F, Liu W P, Luo J Q, Sun D L, Sun G H, Zhang D M, Wang X 2018 CrystEngComm 20 6291Google Scholar

    [5]

    Hou W T, Zhao H Y, Qin Z P, et al. 2020 Opt. Mater. Express 10 2730

    [6]

    Li S M, Fang Q N, Zhang Y H, et al. 2021 Opt. Laser Technol. 143 107345Google Scholar

    [7]

    李加红, 孙贵花, 张庆礼, 王小飞, 张德明, 刘文鹏, 高进云, 郑丽丽, 韩松, 陈照, 殷绍唐 2022 物理学报 71 164206Google Scholar

    Li J H, Sun G H, Zhang Q L, Wang X F, Zhang D M, Liu W P, Gao J Y, Zheng L L, Han S, Chen Z, Yin S T 2022 Acta Phys. Sin. 71 164206Google Scholar

    [8]

    孙贵花, 张庆礼, 李加红, 罗建乔, 王小飞, 高进云 2023 人工晶体学报 52 104Google Scholar

    Sun G H, Zhang Q L, Li J H, Luo J Q, Wang X F, Gao J Y 2023 J. Synth. Cryst. 52 104Google Scholar

    [9]

    He Y, Dou R Q, Zhang H T, et al. 2020 Infrared Laser Engineer. 49 20201067Google Scholar

    [10]

    Zhang H L, Sun X J, Luo J Q, Fang Z Q, Zhao X Y, Cheng M J, Zhang Q L, Sun D L 2016 J. Alloy. Compod. 672 223Google Scholar

    [11]

    Zhang H L, Sun D L, Luo J Q, et al. 2018 J. Lumin. 194 636Google Scholar

    [12]

    Peng J T, Xia H P, Wang P Y, Hu H Y, Tang L, Zhang Y P, Jiang H C, Chen B J 2013 Optoelectron. Lett. 9 362Google Scholar

    [13]

    朱军, 戴世勋, 王训四, 沈祥, 徐铁峰, 聂秋华 2010 物理学报 59 5803Google Scholar

    Zhu J, Dai S X, Wang X S, Shen X, Xu T F, Nie Q H 2010 Acta Phys. Sin. 59 5803Google Scholar

    [14]

    Ronald W S, Thomas R H 2016 Proc. of SPIE 9726 97261O-1

    [15]

    Chaix-Pluchery O, Sauer Dand Kreisel J 2010 J. Phys.: Condens. Mat. 22 165901

    [16]

    Chaix-Pluchery O, Sauer Dand Kreisel J 2010 J. Phys. Condens. Matter 22 165901Google Scholar

    [17]

    Wang Y, Li J F, You Z Y, Zhu Z J, Tu C Y 2010 J. Alloy. Compod. 502 184Google Scholar

    [18]

    Zhang Y, Huang F F, Liu L W, Liu X Q, Zheng S P, Chen D P 2016 Mater. Lett. 167 1Google Scholar

    [19]

    Amanyan S N, Arsen’ev P A, Bagdasarov Kh S 1983 Plenum Publishing Corporation 38 344

    [20]

    Li J H, Zhang Q L, Sun G H, Gao J Y, Wang X F, Dou R Q, Ding S J, Zhang D M, Liu W P, Luo J Q, Sun Y 2022 Chin. J. Lumin. 43 1779 [李加红, 张庆礼, 孙贵花, 高进云, 王小飞, 窦仁勤, 丁守军, 张德明, 刘文鹏, 罗建乔, 孙 彧 2022 发光学报 43 1779]Google Scholar

    Li J H, Zhang Q L, Sun G H, Gao J Y, Wang X F, Dou R Q, Ding S J, Zhang D M, Liu W P, Luo J Q, Sun Y 2022 Chin. J. Lumin. 43 1779Google Scholar

    [21]

    Yan W L, Sun Y J, Wang Z Y, Wang W, Fang S S, Huang Y X, Wang Y Q, Tu C Y, Wen H R 2021 J. Lumin. 236 118067Google Scholar

  • 图 1  Pr, Yb, Ho:GdScO3晶体及切片

    Fig. 1.  As-grown Pr, Yb, Ho:GdScO3 crystal and slices sample.

    图 2  Pr, Yb, Ho:GdScO3晶体的粉末衍射图

    Fig. 2.  XRD pattern of Pr, Yb, Ho:GdScO3 crystal powders.

    图 3  Pr, Yb, Ho:GdScO3晶体和Yb, Ho:GdScO3晶体的拉曼谱图

    Fig. 3.  Raman spectra of the as-grown Pr, Yb, Ho:GdScO3 and Yb, Ho:GdScO3 crystals.

    图 4  Pr, Yb, Ho:GdScO3晶体的透过光谱

    Fig. 4.  Transmittance spectra of the as-grown Pr, Yb, Ho:GdScO3 crystal.

    图 5  Pr, Yb, Ho:GdScO3晶体吸收光谱

    Fig. 5.  Absorption spectra of the as-grown Pr, Yb, Ho: GdScO3 crystal.

    图 6  Pr, Yb, Ho:GdScO3晶体的荧光光谱

    Fig. 6.  Emission spectra of the as-grown Pr, Yb, Ho:GdScO3 crystal.

    图 7  Pr, Yb, Ho:GdScO3晶体中Ho3+:5I6 → 5I8 (a)和5I7 →5I8 (b)跃迁的能级衰减曲线

    Fig. 7.  Fluorescence decay curves of Ho3+:5I6 → 5I8 (a) and 5I7 → 5I8 (b) in Pr, Yb, Ho:GdScO3 crystal.

    图 8  Pr, Yb, Ho:GdScO3晶体中Yb3+, Ho3+与Pr3+离子间的能量传递示意图

    Fig. 8.  Diagram of energy transfer processes among Yb3+, Ho3+ and Pr3+ ions in the Pr, Yb, Ho:GdScO3 crystal.

    表 1  不同材料中Ho3+离子与Pr3+离子之间的能量传递效率

    Table 1.  The energy transfer efficiencies between Ho3+ and Pr3+ in different materials.

    材料 能量传递效率/%
    Ho3+:5I6 → Pr3+:3F4+3F3 Ho3+:5I7 → Pr3+:3F2+3H6
    0.2%Pr, 5%Yb, 1%Ho:GdScO3晶体* 18.9 99.0
    0.2%Pr, 5%Yb, 1%Ho:GYTO晶体[9] 10.26 87.13
    0.2%Pr, 10%Yb, 1%Ho:YAP晶体[10] 7.1 85.8
    2%Cr, 0.1%Pr, 50%Yb, 0.42%Ho:GYSGG晶体[11] 13.3 36.3
    1.03%Pr, 2.06%Ho:YLF晶体[12] 27.0 92.5
    2%Pr, 1%Ho:Ge-Ga-Se玻璃[13] 82
    15%Yb, 2%Ho, 1%Pr:YAG晶体[14] 86.4
    注: *表示本文的结果. 表中材料的各元素含量均为原子分数.
    下载: 导出CSV
  • [1]

    Hu D, Dong J, Tian J, Wang W D, Wang Q G, Xue Y Y, Xu X D, Xu J 2021 J. Lumin. 238 118243Google Scholar

    [2]

    Arsrnev P, Binert K, Svirridova R 1972 Phys. Status Solidi 9 103Google Scholar

    [3]

    Yamaji A, Kochurikhin V, Fujimoto Y, Futami Y, Yanagida T, Yokota Y, Kurosawa S, Yoshikawa A 2012 Phys. Status Solidi C 9 2267Google Scholar

    [4]

    Peng F, Liu W P, Luo J Q, Sun D L, Sun G H, Zhang D M, Wang X 2018 CrystEngComm 20 6291Google Scholar

    [5]

    Hou W T, Zhao H Y, Qin Z P, et al. 2020 Opt. Mater. Express 10 2730

    [6]

    Li S M, Fang Q N, Zhang Y H, et al. 2021 Opt. Laser Technol. 143 107345Google Scholar

    [7]

    李加红, 孙贵花, 张庆礼, 王小飞, 张德明, 刘文鹏, 高进云, 郑丽丽, 韩松, 陈照, 殷绍唐 2022 物理学报 71 164206Google Scholar

    Li J H, Sun G H, Zhang Q L, Wang X F, Zhang D M, Liu W P, Gao J Y, Zheng L L, Han S, Chen Z, Yin S T 2022 Acta Phys. Sin. 71 164206Google Scholar

    [8]

    孙贵花, 张庆礼, 李加红, 罗建乔, 王小飞, 高进云 2023 人工晶体学报 52 104Google Scholar

    Sun G H, Zhang Q L, Li J H, Luo J Q, Wang X F, Gao J Y 2023 J. Synth. Cryst. 52 104Google Scholar

    [9]

    He Y, Dou R Q, Zhang H T, et al. 2020 Infrared Laser Engineer. 49 20201067Google Scholar

    [10]

    Zhang H L, Sun X J, Luo J Q, Fang Z Q, Zhao X Y, Cheng M J, Zhang Q L, Sun D L 2016 J. Alloy. Compod. 672 223Google Scholar

    [11]

    Zhang H L, Sun D L, Luo J Q, et al. 2018 J. Lumin. 194 636Google Scholar

    [12]

    Peng J T, Xia H P, Wang P Y, Hu H Y, Tang L, Zhang Y P, Jiang H C, Chen B J 2013 Optoelectron. Lett. 9 362Google Scholar

    [13]

    朱军, 戴世勋, 王训四, 沈祥, 徐铁峰, 聂秋华 2010 物理学报 59 5803Google Scholar

    Zhu J, Dai S X, Wang X S, Shen X, Xu T F, Nie Q H 2010 Acta Phys. Sin. 59 5803Google Scholar

    [14]

    Ronald W S, Thomas R H 2016 Proc. of SPIE 9726 97261O-1

    [15]

    Chaix-Pluchery O, Sauer Dand Kreisel J 2010 J. Phys.: Condens. Mat. 22 165901

    [16]

    Chaix-Pluchery O, Sauer Dand Kreisel J 2010 J. Phys. Condens. Matter 22 165901Google Scholar

    [17]

    Wang Y, Li J F, You Z Y, Zhu Z J, Tu C Y 2010 J. Alloy. Compod. 502 184Google Scholar

    [18]

    Zhang Y, Huang F F, Liu L W, Liu X Q, Zheng S P, Chen D P 2016 Mater. Lett. 167 1Google Scholar

    [19]

    Amanyan S N, Arsen’ev P A, Bagdasarov Kh S 1983 Plenum Publishing Corporation 38 344

    [20]

    Li J H, Zhang Q L, Sun G H, Gao J Y, Wang X F, Dou R Q, Ding S J, Zhang D M, Liu W P, Luo J Q, Sun Y 2022 Chin. J. Lumin. 43 1779 [李加红, 张庆礼, 孙贵花, 高进云, 王小飞, 窦仁勤, 丁守军, 张德明, 刘文鹏, 罗建乔, 孙 彧 2022 发光学报 43 1779]Google Scholar

    Li J H, Zhang Q L, Sun G H, Gao J Y, Wang X F, Dou R Q, Ding S J, Zhang D M, Liu W P, Luo J Q, Sun Y 2022 Chin. J. Lumin. 43 1779Google Scholar

    [21]

    Yan W L, Sun Y J, Wang Z Y, Wang W, Fang S S, Huang Y X, Wang Y Q, Tu C Y, Wen H R 2021 J. Lumin. 236 118067Google Scholar

  • [1] 王欢, 何春娟, 徐升, 王义炎, 曾祥雨, 林浚发, 王小艳, 巩静, 马小平, 韩坤, 王乙婷, 夏天龙. 拓扑半金属及磁性拓扑材料的单晶生长. 物理学报, 2023, 72(3): 038103. doi: 10.7498/aps.72.20221574
    [2] 孙贵花, 张庆礼, 罗建乔, 王小飞, 谷长江. Pr,Yb,Ho:GdScO3晶体生长及光谱性能研究. 物理学报, 2023, 0(0): . doi: 10.7498/aps.72.20231362
    [3] 李加红, 孙贵花, 张庆礼, 王小飞, 张德明, 刘文鹏, 高进云, 郑丽丽, 韩松, 陈照, 殷绍唐. 退火气氛对GdScO3和Yb:GdScO3晶体的结构和光谱性质的影响. 物理学报, 2022, 71(16): 164206. doi: 10.7498/aps.71.20220196
    [4] 孙贵花, 张庆礼, 罗建乔, 孙敦陆, 谷长江, 郑丽丽, 韩松, 李为民. Ti:MgAl2O4激光晶体的提拉法生长及性能表征. 物理学报, 2020, 69(1): 014210. doi: 10.7498/aps.69.20191150
    [5] 刘坚, 刘军芳, 苏良碧, 张倩, 马凤凯, 姜大朋, 徐军. Gd3+/Y3+共掺对Nd:CaF2晶体光谱性能的影响. 物理学报, 2016, 65(5): 054207. doi: 10.7498/aps.65.054207
    [6] 郭灿, 王锦程, 王志军, 李俊杰, 郭耀麟, 唐赛. BCC枝晶生长原子堆垛过程的晶体相场研究. 物理学报, 2015, 64(2): 028102. doi: 10.7498/aps.64.028102
    [7] 黄伟超, 刘丁, 焦尚彬, 张妮. 直拉法晶体生长过程非稳态流体热流耦合. 物理学报, 2015, 64(20): 208102. doi: 10.7498/aps.64.208102
    [8] 葛文琦, 柴路, 胡明列, 王清月, 苏良碧, 李红军, 郑丽和, 徐军. 镱钠共掺氟化钙锁模激光器产生190 fs光脉冲. 物理学报, 2012, 61(1): 014213. doi: 10.7498/aps.61.014213
    [9] 周鹏宇, 张庆礼, 杨华军, 宁凯杰, 孙敦陆, 罗建乔, 殷绍唐. 5 at%Yb3+: YNbO4 的提拉法晶体生长和光谱特性. 物理学报, 2012, 61(22): 228103. doi: 10.7498/aps.61.228103
    [10] 肖进, 张庆礼, 周文龙, 谭晓靓, 刘文鹏, 殷绍唐, 江海河, 夏上达, 郭常新. Nd3+:Gd3Sc2Al3O12 晶场能级及拟合. 物理学报, 2010, 59(10): 7306-7313. doi: 10.7498/aps.59.7306
    [11] 邢辉, 陈长乐, 金克新, 谭兴毅, 范飞. 相场晶体法模拟过冷熔体中的晶体生长. 物理学报, 2010, 59(11): 8218-8225. doi: 10.7498/aps.59.8218
    [12] 林琼斐, 夏海平, 王金浩, 张约品, 张勤远. Ga2O3组分对Tm3+掺杂GeO2-Ga2O3-Li2O-BaO-La2O3玻璃的光谱性能影响. 物理学报, 2008, 57(4): 2554-2561. doi: 10.7498/aps.57.2554
    [13] 牛睿祺, 董慧茹, 王云平. 非线性光学晶体4-(4-二甲基氨基苯乙烯基)甲基吡啶对甲基苯磺酸盐的制备与性能研究. 物理学报, 2007, 56(7): 4235-4241. doi: 10.7498/aps.56.4235
    [14] 杨秋红, 徐 军, 豆传国, 张红伟, 丁 君, 唐在峰. La2O3对Yb:Y2O3透明陶瓷光谱性能的影响. 物理学报, 2007, 56(7): 3961-3965. doi: 10.7498/aps.56.3961
    [15] 宋淑芳, 陈维德, 许振嘉, 徐叙瑢. 掺Er/Pr的GaN薄膜深能级的研究. 物理学报, 2006, 55(3): 1407-1412. doi: 10.7498/aps.55.1407
    [16] 叶云霞, 余柯涵, 钱列加, 范滇元, 彭 波. Nd3+螯合物的含氢有机溶液光谱性能研究. 物理学报, 2006, 55(12): 6424-6429. doi: 10.7498/aps.55.6424
    [17] 王英伟, 王自东, 程灏波. 新型激光晶体Yb:KY(WO4)2的结构与光谱. 物理学报, 2006, 55(9): 4803-4808. doi: 10.7498/aps.55.4803
    [18] 杨秋红, 徐 军, 苏良碧, 张红伟. Yb:Y2-2xLa2xO3激光透明陶瓷的光谱性能. 物理学报, 2006, 55(3): 1207-1210. doi: 10.7498/aps.55.1207
    [19] 刘向荣, 王 楠, 魏炳波. 无容器条件下Cu-Pb偏晶的快速生长. 物理学报, 2005, 54(4): 1671-1678. doi: 10.7498/aps.54.1671
    [20] 徐锦锋, 魏炳波. 快速凝固Co-Cu包晶合金的电学性能. 物理学报, 2005, 54(7): 3444-3450. doi: 10.7498/aps.54.3444
计量
  • 文章访问数:  2318
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-21
  • 修回日期:  2023-12-02
  • 上网日期:  2024-02-26
  • 刊出日期:  2024-03-05

/

返回文章
返回