搜索

x
中国物理学会期刊

Pr, Yb, Ho:GdScO3晶体生长及光谱性能

CSTR: 32037.14.aps.73.20231362

Growth and spectral properties of Pr, Yb, Ho:GdScO3 crystal

CSTR: 32037.14.aps.73.20231362
PDF
HTML
导出引用
  • 2.7—3.0 μm波段激光在很多领域具有重要应用, 为探索和发展该波段新型晶体材料, 本文采用提拉法生长出Pr, Yb, Ho:GdScO3晶体, 通过共掺入Pr3+离子以达到衰减Ho3+:5I7能级寿命的目的. 采用X射线衍射测试得到了晶体的粉末衍射数据, 测量了拉曼光谱, 并对晶体的拉曼振动峰进行指认, 对Pr, Yb, Ho:GdScO3晶体的透过光谱、发射光谱和荧光寿命进行表征. Yb3+的最强吸收峰在966 nm, 吸收峰半峰宽为90 nm; 2.7—3.0 μm波段最强发射峰在2850 nm, 半峰宽为70 nm; Ho3+:5I65I7能级寿命分别为1094 µs和56 µs. 与Yb, Ho:GdScO3晶体相比, Yb3+的吸收峰和2.7—3.0 μm的发射峰半峰宽明显展宽, 同时下能级寿命显著减小, 计算表明Ho3+:5I7与Pr3+:3F2+3H6能级之间能实现高效的能量传递. 以上结果表明Pr, Yb, Ho:GdScO3晶体是性能更优异的2.7—3.0 μm波段激光材料.

     

    In order to explore and develop new crystal materials in the 2.7–3.0 μm band, Pr, Yb, Ho:GdScO3 crystal are successfully grown by the Czochralski method for the first time. X-ray diffraction measurement is performed to obtain powder diffraction data. Raman spectra aree measured and the vibration peaks are identified. The transmission spectrum, emission spectrum and fluorescence lifetime of Pr, Yb, Ho:GdScO3 crystal are also characterized. The center of the strongest absorption band is at 966 nm with a half-peak width of 90 nm, which comes from the transition of Yb3+:2F7/22F5/2. The absorption cross section of Yb3+ is calculated and the values at 966, 973, 985 nm are 0.62×10–20, 0.60×10–20 and 0.58×10–20 cm2 respectively. The maximum emission peak is at 2850 nm and the half-peak width is 70 nm, the lifetimes of Ho3+:5I6 and 5I7 are measured to be 1094 and 56 μs respectively, and the emission cross section at 2850 and 2935 nm are calculated to be 3.6×10–20 cm2 and 1.21×10–20 cm2, respectively. Comparing with Yb, Ho: GdScO3 crystal, the absorption peak of Yb3+ and the emission peak are both broadened, which are related to the increase of crystal disorder. The lifetime of the lower energy level decreases significantly. Furthermore, the energy transfer mechanism between \rm Ho^3+ and Pr3+ is analyzed, and the energy transfer efficiency between Ho3+:5I7 and Pr3+:3F2+3H6 is calculated to be 99%, which is higher than those in other materials. All the results show that Pr, Yb, Ho:GdScO3 crystal is an excellent 2.7–3 μm laser material, and is easier to achieve laser output than Yb, Ho:GdScO3 crystal.

     

    目录

    /

    返回文章
    返回