搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于温度迭代校正自吸收效应的激光诱导击穿光谱定量分析方法

侯佳佳 张大成 冯中琦 朱江峰

引用本文:
Citation:

基于温度迭代校正自吸收效应的激光诱导击穿光谱定量分析方法

侯佳佳, 张大成, 冯中琦, 朱江峰

Quantitative analysis method of laser-induced breakdown spectroscopy based on temperature iterative correction of self-absorption effect

Hou Jia-Jia, Zhang Da-Cheng, Feng Zhong-Qi, Zhu Jiang-Feng
PDF
HTML
导出引用
  • 激光诱导击穿光谱(laser-induced breakdown spectroscopy, LIBS)是一种理想的实时在线检测合金中微量元素的方法. 然而在激光诱导击穿产生的高密度等离子体中, 自吸收通常是一种不期望出现的效应, 它降低了谱线的真实强度, 使谱线强度随目标物质含量增长呈非线性, 从而严重影响对目标中元素含量测量的准确性. 本文提出了一种基于温度迭代校正自吸收效应的方法, 借助等离子体热平衡辐射模型, 对等离子体电子温度(T )和辐射粒子数密度乘以吸收路径长度(Nl )这两个参数进行迭代计算和校正, 消除自吸收对谱线强度的影响, 最终提高定量分析的准确性. 对合金钢样品中Mn元素的实验测量结果表明, 该方法有效地提高了Boltzmann平面图的线性度及元素含量的测量精度. 该方法模型简单, 计算效率高, 且与Stark展宽系数的可用性和准确性无关, 可以直接获得辐射粒子数密度和吸收路径长度参数, 因此在提高LIBS定量分析能力的同时, 还可以实现对等离子体状态的诊断.
    Laser-induced breakdown spectroscopy (LIBS) is an ideal real-time on-line method of detecting minor elements in alloys. However, in the case of laser-produced high-density plasma, the self-absorption is usually an undesired effect because it not only reduces the true line intensity, leading the line intensity to become nonlinear with the increase of emitting species content, but also affects the characterization parameters of the plasma, and finally affects the accuracy of quantitative analysis. Since the plasma electron temperature $(T)$, radiation particle number density and absorption path length (Nl ) determine the degree of self-absorption and affect the corrected spectral line intensity, a new self-absorption correction method is proposed based on temperature iteration. The initial T is obtained by using this method through spectral line intensity, and the self-absorption coefficient SA is calculated based on the initial Nl parameter to correct the spectral line intensity. Then a new T is obtained from the new spectral line intensity and the new SA is calculated to further correct the spectral line intensity. Through continuous calculation and correction of these two parameters, self-absorption correction is finally achieved. The experimental results of alloy steel samples show that the linearity of Boltzmann plot is increased from 0.867 without self-absorption correction to 0.974 with self-absorption correction, and the linear correlation coefficient R2 of the single variable calibration curve for Mn element increases from 0.971 to 0.997. The relative error of elemental content measurement is improved from 4.32% without self-absorption correction to 1.23% with self-absorption correction. Compared with the commonly applied self-absorption correction methods, this method has obvious advantages of simpler programming, higher computation efficiency, and its independence of the availability or accuracy of Stark broadening coefficients. Moreover, this method can directly obtain the radiation particle number density and absorption path length, which is beneficial to the diagnosis and quantitative analysis of plasma.
      通信作者: 张大成, dch.zhang@xidian.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62205257, U2241288)、陕西省自然科学基础研究计划(批准号: 2022JQ-642)和量子光学与光量子器件国家重点实验室开放课题(批准号: KF202104)资助的课题.
      Corresponding author: Zhang Da-Cheng, dch.zhang@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62205257, U2241288), the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2022JQ-642), and the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices, China (Grant No. KF202104).
    [1]

    Bulajic D, Corsi M, Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Tognoni E 2002 Spectrochim. Acta, Part B 57 339Google Scholar

    [2]

    孙对兄, 苏茂根, 董晨钟, 王向丽, 张大成, 马新文 2010 物理学报 59 4571Google Scholar

    Sun D X, Su M G, Dong C Z, Wang X L, Zhang D C, Ma X W 2010 Acta Phys. Sin. 59 4571Google Scholar

    [3]

    Yao S C, Lu J D, Chen K, Pan S H, Li J Y, Dong M 2011 Appl. Surf. Sci. 257 3103Google Scholar

    [4]

    Hai R, Farid N, Zhao D Y, Zhang L, Liu J H, Ding H B, Wu J, Luo G 2013 Spectrochim. Acta, Part B 87 147Google Scholar

    [5]

    Wang Z, Yuan T B, Hou Z Y, Zhou W D, Lu J D, Ding H B, Zeng X Y 2014 Front. Phys. 9 419Google Scholar

    [6]

    杨文斌, 周江宁, 李斌成, 邢廷文 2017 物理学报 66 095201Google Scholar

    Yang W B, Zhou J N, Li B C, Xing T W 2017 Acta Phys. Sin. 66 095201Google Scholar

    [7]

    Rong K, Wang Z Z, Hu R M, Liu R W, Deguchi Y, Yan J J, Liu J P 2020 Plasma Sci. Technol. 22 074010Google Scholar

    [8]

    Bredice F, Borges F O, Sobral H, et al. 2006 Spectrochim. Acta, Part B 61 1294Google Scholar

    [9]

    赵法刚, 张宇, 张雷, 尹王保, 董磊, 马维光, 肖连团, 贾锁堂 2018 物理学报 67 165201Google Scholar

    Zhao F G, Zhang Y, Zhang L, Yin W B, Dong L, Ma W G, Xiao L T, Jia S T 2018 Acta Phys. Sin. 67 165201Google Scholar

    [10]

    Aguilera J A, Bengoechea J, Aragón C 2003 Spectrochim. Acta, Part B 58 221Google Scholar

    [11]

    Mansour S A M 2015 Opt. Photonics J. 5 79Google Scholar

    [12]

    Gornushkin I B, Stevenson C L, Smith B W, Omenetto N, Winefordner J D 2001 Spectrochim. Acta, Part B 56 1769Google Scholar

    [13]

    Sun L, Yu H 2009 Talanta 79 388Google Scholar

    [14]

    Li J M, Guo L B, Li C M, Zhao N, Yang X Y, Hao Z Q, Li X Y, Zeng X Y, Lu Y F 2015 Opt. Lett. 40 5224Google Scholar

    [15]

    Tang Y, Li J M, Hao Z Q, Tang S S, Zhu Z H, Guo L B, Li X Y, Zeng X Y, Duan J, Lu Y F 2018 Opt. Express 26 12121Google Scholar

    [16]

    Li T Q, Hou Z Y, Fu Y T, Yu J L, Gu W L, Wang Z 2019 Anal. Chim. Acta 1058 39Google Scholar

    [17]

    Zhang Y Q, Lu Y, Tian Y, Li Y, Ye W Q, Guo J J, Zheng R E 2022 Anal. Chim. Acta 1195 339423Google Scholar

    [18]

    王海燕, 胡前库, 杨文朋, 李旭升 2016 物理学报 65 077101Google Scholar

    Wang H Y, Hu Q K, Yang W P, Li X S 2016 Acta Phys. Sin. 65 077101Google Scholar

    [19]

    Ahmed N, Ahmed R, Rafiqe M, Baig M A 2017 Laser Part. Beams 35 1Google Scholar

    [20]

    Miskovicova J, Angus M, Van d M H, Veis P 2020 Fusion Eng. Des. 153 111488Google Scholar

    [21]

    Zhang D C, Ding J, Feng Z Q, et al. 2021 Spectrochim. Acta, Part B 180 106192Google Scholar

    [22]

    Sherbini A M E, Sherbini T M E, Hegazy H, Cristoforetti G, Legnaioli S, Palleschi V, Pardini L, Salvetti A, Tognoni E 2005 Spectrochim. Acta, Part B 60 1573Google Scholar

    [23]

    侯佳佳, 张大成, 张雷, 朱江峰, 冯中琦 中国专利 ZL 2021 1 0620946.8

    Hou J J, Zhang D C, Zhang L, Zhu J F, Feng Z Q CN Patent ZL 2021 1 0620946.8 [2023-02-03

    [24]

    Kepple P, Griem H R 1968 Phys. Rev. 173 317Google Scholar

    [25]

    Bredice F, Borges F O, Sobral H, Villagran-Muniz M, Di Rocco H O, Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Tognoni E 2007 Spectrochim. Acta, Part B 62 1237Google Scholar

    [26]

    Grifoni E, Legnaioli S, Lezzerini M, Lorenzetti G, Pagnotta S, Palleschi V 2014 J. Spectro. 2014 1Google Scholar

  • 图 1  基于温度迭代校正自吸收方法的流程图

    Fig. 1.  Flowchart of the self-absorption correction method based on temperature iteration.

    图 2  合金钢样品的典型平均光谱

    Fig. 2.  Typical average spectrum of the alloy steel samples.

    图 3  Mn I 476.23 nm谱线的定标曲线 (a) 原始强度; (b) 内标Fe线归一化强度

    Fig. 3.  Calibration curves of Mn I 476.23 nm: (a) The raw intensity; (b) normalized intensity with internal standard Fe line.

    图 4  Mn质量含量为2.07%的合金样品自吸收校正前后Boltzmann比较图

    Fig. 4.  Comparison of Boltzmann plots that without and with self-absorption (SA) correction for the 2.07% Mn alloy sample.

    图 5  Mn I 476.23 nm谱线经过自吸收校正后的内标归一化定标曲线

    Fig. 5.  Calibration curves of Mn I 476.23 nm using the internal standard normalized intensity with self-absorption correction.

    图 6  Mn I 476.23 nm谱线的自吸收系数SA

    Fig. 6.  The self-absorption coefficients (SA) for Mn I 476.23 nm line.

    图 7  时间积分LIBS分析中的等效门时间

    Fig. 7.  Equivalent gate time in time-integrated LIBS analysis

    表 1  中低合金钢标准样品中微量元素Mn的质量含量及不确定度

    Table 1.  Certified weight contents and uncertainty of minor element Mn in the middle-low alloy steels.

    No.123456
    Mn weight content/%2.071.621.260.850.430.14
    Uncertainty/%0.030.030.020.0040.0040.003
    下载: 导出CSV

    表 2  Mn I谱线的光谱参数

    Table 2.  Spectroscopic parameters of the selected lines of Mn I.

    Element Wavelength /nm Transition probability/(107 s–1) Statistical weight Upper level energy/eV Lower level energy/eV
    Mn I 383.44 4.29 8 5.40 2.16
    403.31 1.65 6 3.07 0.00
    404.14 7.87 10 5.18 2.11
    475.40 3.03 8 4.89 2.28
    476.23 7.83 10 5.49 2.89
    478.34 4.01 8 4.89 2.30
    482.35 4.99 8 4.89 2.32
    Fe I 400.52 2.04 5 4.65 1.56
    489.15 3.08 7 5.39 2.85
    Hα 656.27 5.39 4 12.09 10.20
    下载: 导出CSV

    表 3  中低合金钢标准样品中微量元素Mn质量含量的测量相对误差

    Table 3.  Measurement relative error of minor element Mn in the middle-low alloy steels.

    样品Mn元素
    质量含量/%
    2.071.621.260.850.430.14平均
    校正前测量
    相对误差/%
    5.804.321.587.0618.6028.5710.99
    校正后测量
    相对误差/%
    1.451.230.792.352.3221.434.93
    下载: 导出CSV
  • [1]

    Bulajic D, Corsi M, Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Tognoni E 2002 Spectrochim. Acta, Part B 57 339Google Scholar

    [2]

    孙对兄, 苏茂根, 董晨钟, 王向丽, 张大成, 马新文 2010 物理学报 59 4571Google Scholar

    Sun D X, Su M G, Dong C Z, Wang X L, Zhang D C, Ma X W 2010 Acta Phys. Sin. 59 4571Google Scholar

    [3]

    Yao S C, Lu J D, Chen K, Pan S H, Li J Y, Dong M 2011 Appl. Surf. Sci. 257 3103Google Scholar

    [4]

    Hai R, Farid N, Zhao D Y, Zhang L, Liu J H, Ding H B, Wu J, Luo G 2013 Spectrochim. Acta, Part B 87 147Google Scholar

    [5]

    Wang Z, Yuan T B, Hou Z Y, Zhou W D, Lu J D, Ding H B, Zeng X Y 2014 Front. Phys. 9 419Google Scholar

    [6]

    杨文斌, 周江宁, 李斌成, 邢廷文 2017 物理学报 66 095201Google Scholar

    Yang W B, Zhou J N, Li B C, Xing T W 2017 Acta Phys. Sin. 66 095201Google Scholar

    [7]

    Rong K, Wang Z Z, Hu R M, Liu R W, Deguchi Y, Yan J J, Liu J P 2020 Plasma Sci. Technol. 22 074010Google Scholar

    [8]

    Bredice F, Borges F O, Sobral H, et al. 2006 Spectrochim. Acta, Part B 61 1294Google Scholar

    [9]

    赵法刚, 张宇, 张雷, 尹王保, 董磊, 马维光, 肖连团, 贾锁堂 2018 物理学报 67 165201Google Scholar

    Zhao F G, Zhang Y, Zhang L, Yin W B, Dong L, Ma W G, Xiao L T, Jia S T 2018 Acta Phys. Sin. 67 165201Google Scholar

    [10]

    Aguilera J A, Bengoechea J, Aragón C 2003 Spectrochim. Acta, Part B 58 221Google Scholar

    [11]

    Mansour S A M 2015 Opt. Photonics J. 5 79Google Scholar

    [12]

    Gornushkin I B, Stevenson C L, Smith B W, Omenetto N, Winefordner J D 2001 Spectrochim. Acta, Part B 56 1769Google Scholar

    [13]

    Sun L, Yu H 2009 Talanta 79 388Google Scholar

    [14]

    Li J M, Guo L B, Li C M, Zhao N, Yang X Y, Hao Z Q, Li X Y, Zeng X Y, Lu Y F 2015 Opt. Lett. 40 5224Google Scholar

    [15]

    Tang Y, Li J M, Hao Z Q, Tang S S, Zhu Z H, Guo L B, Li X Y, Zeng X Y, Duan J, Lu Y F 2018 Opt. Express 26 12121Google Scholar

    [16]

    Li T Q, Hou Z Y, Fu Y T, Yu J L, Gu W L, Wang Z 2019 Anal. Chim. Acta 1058 39Google Scholar

    [17]

    Zhang Y Q, Lu Y, Tian Y, Li Y, Ye W Q, Guo J J, Zheng R E 2022 Anal. Chim. Acta 1195 339423Google Scholar

    [18]

    王海燕, 胡前库, 杨文朋, 李旭升 2016 物理学报 65 077101Google Scholar

    Wang H Y, Hu Q K, Yang W P, Li X S 2016 Acta Phys. Sin. 65 077101Google Scholar

    [19]

    Ahmed N, Ahmed R, Rafiqe M, Baig M A 2017 Laser Part. Beams 35 1Google Scholar

    [20]

    Miskovicova J, Angus M, Van d M H, Veis P 2020 Fusion Eng. Des. 153 111488Google Scholar

    [21]

    Zhang D C, Ding J, Feng Z Q, et al. 2021 Spectrochim. Acta, Part B 180 106192Google Scholar

    [22]

    Sherbini A M E, Sherbini T M E, Hegazy H, Cristoforetti G, Legnaioli S, Palleschi V, Pardini L, Salvetti A, Tognoni E 2005 Spectrochim. Acta, Part B 60 1573Google Scholar

    [23]

    侯佳佳, 张大成, 张雷, 朱江峰, 冯中琦 中国专利 ZL 2021 1 0620946.8

    Hou J J, Zhang D C, Zhang L, Zhu J F, Feng Z Q CN Patent ZL 2021 1 0620946.8 [2023-02-03

    [24]

    Kepple P, Griem H R 1968 Phys. Rev. 173 317Google Scholar

    [25]

    Bredice F, Borges F O, Sobral H, Villagran-Muniz M, Di Rocco H O, Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Tognoni E 2007 Spectrochim. Acta, Part B 62 1237Google Scholar

    [26]

    Grifoni E, Legnaioli S, Lezzerini M, Lorenzetti G, Pagnotta S, Palleschi V 2014 J. Spectro. 2014 1Google Scholar

  • [1] 何霄, 肖小舟, 何滨, 薛平, 肖嘉莹. 基于光声泵浦成像的氧分压测量定量分析. 物理学报, 2023, 72(21): 218101. doi: 10.7498/aps.72.20231041
    [2] 董鹏凯, 赵上勇, 郑柯鑫, 王蓟, 高勋, 郝作强, 林景全. 激光诱导击穿光谱技术结合神经网络和支持向量机算法的人参产地快速识别研究. 物理学报, 2021, 70(4): 040201. doi: 10.7498/aps.70.20201520
    [3] 戴宇佳, 李明亮, 宋超, 高勋, 郝作强, 林景全. 空间约束结合梯度下降法提高铝合金中Fe成分激光诱导击穿光谱技术检测精度. 物理学报, 2021, 70(20): 205204. doi: 10.7498/aps.70.20210792
    [4] 杨雪, 李苏宇, 姜远飞, 陈安民, 金明星. 不同样品温度下聚焦透镜到样品表面距离对激光诱导铜击穿光谱的影响. 物理学报, 2019, 68(6): 065201. doi: 10.7498/aps.68.20182198
    [5] 赵法刚, 张宇, 张雷, 尹王保, 董磊, 马维光, 肖连团, 贾锁堂. 基于自吸收量化的激光诱导等离子体表征方法. 物理学报, 2018, 67(16): 165201. doi: 10.7498/aps.67.20180374
    [6] 杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星. 飞秒激光成丝诱导Cu等离子体的温度和电子密度. 物理学报, 2017, 66(11): 115201. doi: 10.7498/aps.66.115201
    [7] 杨文斌, 周江宁, 李斌成, 邢廷文. 激光诱导氮气等离子体时间分辨光谱研究及温度和电子密度测量. 物理学报, 2017, 66(9): 095201. doi: 10.7498/aps.66.095201
    [8] 刘玉峰, 张连水, 和万霖, 黄宇, 杜艳君, 蓝丽娟, 丁艳军, 彭志敏. 激光诱导击穿火焰等离子体光谱研究. 物理学报, 2015, 64(4): 045202. doi: 10.7498/aps.64.045202
    [9] 刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君. 激光诱导击穿空气等离子体时间分辨特性的光谱研究. 物理学报, 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [10] 陈添兵, 姚明印, 刘木华, 林永增, 黎文兵, 郑美兰, 周华茂. 基于多元定标法的脐橙Pb元素激光诱导击穿光谱定量分析. 物理学报, 2014, 63(10): 104213. doi: 10.7498/aps.63.104213
    [11] 张颖, 张大成, 马新文, 潘冬, 赵冬梅. 基于激光诱导击穿光谱技术定量分析食用明胶中的铬元素. 物理学报, 2014, 63(14): 145202. doi: 10.7498/aps.63.145202
    [12] 于洋, 郝中骐, 李常茂, 郭连波, 李阔湖, 曾庆栋, 李祥友, 任昭, 曾晓雁. 支持向量机算法在激光诱导击穿光谱技术塑料识别中的应用研究. 物理学报, 2013, 62(21): 215201. doi: 10.7498/aps.62.215201
    [13] 王春龙, 刘建国, 赵南京, 马明俊, 王寅, 胡丽, 张大海, 余洋, 孟德硕, 章炜, 刘晶, 张玉钧, 刘文清. 水体重金属激光诱导击穿光谱定量分析方法对比研究. 物理学报, 2013, 62(12): 125201. doi: 10.7498/aps.62.125201
    [14] 张旭, 姚明印, 刘木华. 激光诱导击穿光谱结合偏最小二乘法定量分析脐橙中Cd含量. 物理学报, 2013, 62(4): 044211. doi: 10.7498/aps.62.044211
    [15] 鲁翠萍, 刘文清, 赵南京, 刘立拓, 陈东, 张玉钧, 刘建国. 土壤重金属铬元素的激光诱导击穿光谱定量分析研究. 物理学报, 2011, 60(4): 045206. doi: 10.7498/aps.60.045206
    [16] 孙对兄, 苏茂根, 董晨钟, 王向丽, 张大成, 马新文. 基于激光诱导击穿光谱技术的铝合金成分定量分析. 物理学报, 2010, 59(7): 4571-4576. doi: 10.7498/aps.59.4571
    [17] 马晓菁, 赵红卫, 代 斌, 刘桂锋. 次黄嘌呤及其核苷的THz光谱. 物理学报, 2008, 57(6): 3429-3434. doi: 10.7498/aps.57.3429
    [18] 张大成, 马新文, 朱小龙, 李 斌, 祖凯玲. 激光诱导击穿光谱应用于三种水果样品微量元素的分析. 物理学报, 2008, 57(10): 6348-6353. doi: 10.7498/aps.57.6348
    [19] 王晓丹, 赵志伟, 徐晓东, 宋平新, 姜本学, 徐 军, 邓佩珍. 不同Yb掺杂量的Yb:Y3Al5O12晶体的光谱分析. 物理学报, 2006, 55(8): 4358-4364. doi: 10.7498/aps.55.4358
    [20] 崔执凤, 张先燚, 姚关心, 汪小丽, 许新胜, 郑贤锋, 凤尔银, 季学韩. 铅黄铜合金中痕量元素定量分析的激光诱导击穿谱研究. 物理学报, 2006, 55(9): 4506-4513. doi: 10.7498/aps.55.4506
计量
  • 文章访问数:  2416
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-21
  • 修回日期:  2023-11-20
  • 上网日期:  2023-11-29
  • 刊出日期:  2024-03-05

/

返回文章
返回