-
偏滤器脱靶为降低托卡马克靶板热负荷提供了一种有效的解决方案, 但脱靶可能引起边界等离子体状态发生变化, 影响整体约束性能. 本文报道了在中国环流器二号A托卡马克上开展的L模放电偏滤器脱靶时边界等离子体极向旋转和湍流动量输运的实验研究. 采用在偏滤器室注入混合气体(60%氮气+40%氘气)的方式实现了偏滤器脱靶. 研究发现, 在未脱靶-预脱靶-脱靶过程中, 实验测得的近刮削层区域
$ \boldsymbol{E}\times \boldsymbol{B} $ 极向流速与湍流动量对极向旋转的驱动作用(雷诺应力)的演化一致; 相较于未脱靶状态, 脱靶时等离子体边缘极向速度剪切明显降低, 导致湍流水平增强. 在湍流输运和辐射都增强的共同作用下, 等离子体整体约束性能下降. 研究表明, 边缘湍流输运和等离子体旋转动力学在偏滤器脱靶影响整体约束的芯-边耦合机制中发挥作用.In a magnetic confinement fusion device, the plasma undergoing nuclear fusion reaction must be maintained in a high-temperature and high-density confinement state for a long enough time to release high energy, while the heat loads on the divertor target plates need to be reduced to avoid damage to wall at the same time. The latter is one of the key challenges of ITER and commercial fusion reactors in future. Divertor detachment provides an effective solution to reduce the heat load on the target plate of tokamak. However, this may result in the change of plasma states at the boundary, thus affecting the plasma confinement. In this paper, edge plasma poloidal rotation and turbulence momentum transport are studied experimentally during the divertor detachment in the L-mode discharge of HL-2A tokamak. The detachment is achieved by injecting a mixture of gas (60% nitrogen+40% deuterium) into the divertor. The gas mixture is injected by pulsed injection, with pulse length being in a range of 5–20 ms. During the divertor detached phase, both the ion saturation current density and the heat flux to the outer target plate decrease considerably. The enhanced radiation is also observed in the divertor and X-point region. It is found that in the process of attachment-to-pre-detachement, the$ \boldsymbol{E}\times \boldsymbol{B} $ poloidal flow velocity in the near scrape-off layer (SOL) changes from ion magnetic drift direction to electron magnetic drift direction. The turbulent driving force of poloidal flow, which is characterized by the negative radial gradient of momentum transfer flux (Reynolds stress), shows the same trend. In the detached phase, both the$ \boldsymbol{E}\times \boldsymbol{B} $ flow and the Reynolds force become very small. Therefore, the dynamics of$ \boldsymbol{E}\times \boldsymbol{B} $ poloidal flow velocity in the SOL is consistent with the evolution of rotation driving effect induced by the turbulent momentum transport. Combined with the$ \boldsymbol{E}\times \boldsymbol{B} $ poloidal flow measured by the probe in the SOL and the beam emission spectrum inside the LCFS, the$ \boldsymbol{E}\times \boldsymbol{B} $ poloidal velocity shearing rate near the LCFS can be inferred. Compared with the attached state, when the divertor is detached, the edge poloidal flow shearing rate decreases significantly, leading to the obviously enhanced turbulence level. Under the influence of both enhanced turbulent transport and radiation, the global confinement degrades moderately. The energy confinement time decreases about 15% and the confinement factor$ {H}_{89-P} $ decreases about 10%. These results indicate that edge turbulent transport and plasma rotation dynamics play a role in the core-edge coupling process in which the divertor detachment affects the global confinement.-
Keywords:
- nuclear fusion power /
- divertors /
- plasma turbulence /
- plasma dynamics and flow
[1] Loarte A, Lipschultz B, Kukushkin A S, et al. 2007 Nucl. Fusion 47 S203Google Scholar
[2] Shimada M, Campbell D J, Mukhovatov V, et al. 2007 Nucl. Fusion 47 S1Google Scholar
[3] Wang L, Wang H Q, Ding S, et al. 2021 Nat. Commun. 12 1365Google Scholar
[4] Leonard A W, Mahdavi M A, Allen S L, et al. 1997 Phys. Rev. Lett. 78 4769Google Scholar
[5] ITER-EDA 1999 Nucl. Fusion 39 2391Google Scholar
[6] Vianello N, Carralero D, Tsui C K, et al. 2020 Nucl. Fusion 60 016001Google Scholar
[7] Kallenbach A, Bernert M, Beurskens M, et al. 2015 Nucl. Fusion 55 053026Google Scholar
[8] Huber A, Brezinsek S, Groth M, et al. 2013 J. Nucl. Mater. 438 S139Google Scholar
[9] Diamond P H, Itoh S I, Itoh K, Hahm T S 2005 Plasma Phys. Control. Fusion 47 R35Google Scholar
[10] Liang A S, Zhong W L, Zou X L, et al. 2018 Phys. Plasmas 25 022501Google Scholar
[11] Long T, Diamond P H, Xu M, Ke R, Nie L, Li B, Wang Z H, Xu J Q, Duan X R 2019 Nucl. Fusion 59 106010Google Scholar
[12] Long T, Diamond P H, et al. 2021 Nucl. Fusion 61 126066Google Scholar
[13] 龙婷, Diamond P H, 柯锐, 洪荣杰, 许敏, 聂林, 王占辉, 李波, 高金明, HL-2A团队 2022 核聚变与等离子体物理 42 152
Long T, Diamond P H, Ke R, Hong R J, Xu M, Nie L, Wang Z H, Li B, Gao J M, HL-2A Team 2022 Nucl. Fusion Plasma Phys. 42 152
[14] Gao J M, Cai L Z, Zou X L, et al. 2021 Nucl. Fusion 61 066024Google Scholar
[15] Duan X R, Xu M, Zhong W L, et al. 2022 Nucl. Fusion 62 042020Google Scholar
[16] Huang Z H, Cheng J, Wu N, Yan L W, Xu H B, Wang W, Miao X G, Yi K Y, Xu J Q, Cai L Z, Shi Z B, Dong J Q, Liu Y, Zhong W L, Yang Q W, Xu M, Duan X R 2022 Plasma Sci. Technol. 24 054002Google Scholar
[17] Gao J M, Li W, Xia Z W, Pan Y D, Lu J, Yi P, Liu Y 2013 Chin. Phys. B 22 015202Google Scholar
[18] 高金明, 程钧, 严龙文, 李伟, 聂林, 冯北滨, 陈程远, 卢杰, 易萍, 季小全 2015 核聚变与等离子体物理 35 1Google Scholar
Gao J M, Cheng J, Yan L W, Li W, Nie L, Feng B B, Chen C Y, Lu J, Yi P, Ji X Q 2015 Nucl. Fusion Plasma Phys. 35 1Google Scholar
[19] Zheng D L, Zhang K, Cui Z Y, Sun P, Dong C F, Lu P, Fu B Z, Liu Z T, Shi Z B, Yang Q W 2018 Plasma Sci. Technol. 20 105103Google Scholar
[20] Meng L Y, Liu J B, Xu J C, et al. 2020 Plasma Phys. Control. Fusion 62 065008Google Scholar
[21] Wu N, Yi K, Wang W, Huang Z, Yan L, Cheng J, Du H, Shi Z, Zhong W, Xu M 2022 Proceedings of the 6th Asia-Pacific Conference on Plasma Physics, Remote October 9-14, 2022 p1
[22] Wu T, Nie L, Yu Y, Gao J M, Li J Y, Ma H C, Wen J, Ke R, Wu N, Huang Z H, Liu L, Zheng D L, Yi K Y, Gao X Y, Wang W, Cheng J, Yan L W, Cai L Z, Wang Z H, Xu M 2023 Plasma Sci. Technol. 25 015102Google Scholar
[23] Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices (Philadelphia: Institute of Physics Publishing) p84
[24] Nie L, Xu M, Ke R, Yuan B D, Wu Y F, Cheng J, Lan T, Yu Y, Hong R J, Guo D, Ting L, Dong Y B, Zhang Y P, Song X M, Zhong W L, Wang Z H, Sun A P, Xu J Q, Chen W, Yan L W, Zou X L, Duan X R, team H-A 2018 Nucl. Fusion 58 036021Google Scholar
[25] Schmid B, Manz P, Ramisch M, Stroth U 2017 Phys. Rev. Lett. 118 055001Google Scholar
[26] Diamond P H, Kim Y B 1991 Phys. Fluids B 3 1626Google Scholar
[27] Manz P, Xu M, Fedorczak N, Thakur S C, Tynan G R 2012 Phys. Plasmas 19 012309Google Scholar
[28] Shaing K C, Crume E C 1989 Phys. Rev. Lett. 63 2369Google Scholar
[29] Connor J W, Wilson H R 2000 Plasma Phys. Control. Fusion 42 R1Google Scholar
[30] Xu M, Tynan G R, Diamond P H, Manz P, Holland C, Fedorczak N, Thakur S C, Yu J H, Zhao K J, Dong J Q, Cheng J, Hong W Y, Yan L W, Yang Q W, Song X M, Huang Y, Cai L Z, Zhong W L, Shi Z B, Ding X T, Duan X R, Liu Y 2012 Phys. Rev. Lett. 108 245001Google Scholar
[31] Ke R, Wu Y F, McKee G R, Yan Z, Jaehnig K, Xu M, Kriete M, Lu P, Wu T, Morton L A, Qin X, Song X M, Cao J Y, Ding X T, Duan X R 2018 Rev. Sci. Instrum. 89 10D122Google Scholar
[32] Wesson J 2011 Tokamaks (Fourth edition) (Oxford: Oxford University Press) p177
[33] Greenwald M 2002 Plasma Phys. Control. Fusion 44 R27Google Scholar
[34] Simmet E, Team A 1996 Plasma Phys. Control. Fusion 38 689Google Scholar
[35] Zhong W L, Shi Z B, Yang Z J, et al. 2016 Phys. Plasmas 23 060702Google Scholar
-
图 1 偏滤器脱靶实验的主要放电参数 (a)环向磁场; (b)等离子体电流; (c)中心弦平均密度; (d)中性束加热功率; (e)偏滤器注气; (f)靶板离子饱和流密度; (g)外靶板热流密度; (h)外靶板电子温度; (i)主真空室热辐射信号; (j)氮辐射强度
Fig. 1. The main discharge parameters in the divertor detachment experiment: (a) Toroidal field; (b) plasma current; (c) central line-averaged density; (d) NBI heating power; (e) gas puffing in divertor; (f) ion saturation current density onto target; (g) heat flux onto outer target; (h) electron temperature at outer target; (i) bolometer signal through the main chamber; (j) nitrogen radiation intensity.
图 5 偏滤器脱靶过程 (a)等离子体边缘$ \boldsymbol{E}\times \boldsymbol{B} $极向速度剪切; (b)密度扰动的时频自功率谱; (c)能量约束时间; (d)能量约束增强因子的变化
Fig. 5. (a) Edge $ \boldsymbol{E}\times \boldsymbol{B} $ poloidal velocity shear; (b) time-frequency auto-spectrum of density fluctuations; (c) plasma energy confinement time; (d) energy confinement enhanced factor during the divertor detachment.
图 6 偏滤器脱靶过程 (a)等离子体密度; (b)电子温度; (c)压强; (d)总的$ {v}_{\theta , \boldsymbol{E}\times \boldsymbol{B}} $和逆磁速度$ {v}_{\theta , \nabla p} $
Fig. 6. (a) Density, (b) temperature, (c) pressure, (d) total $ {v}_{\theta , \boldsymbol{E}\times \boldsymbol{B}} $ and diamagnetic velocity $ {v}_{\theta , \nabla p} $.
-
[1] Loarte A, Lipschultz B, Kukushkin A S, et al. 2007 Nucl. Fusion 47 S203Google Scholar
[2] Shimada M, Campbell D J, Mukhovatov V, et al. 2007 Nucl. Fusion 47 S1Google Scholar
[3] Wang L, Wang H Q, Ding S, et al. 2021 Nat. Commun. 12 1365Google Scholar
[4] Leonard A W, Mahdavi M A, Allen S L, et al. 1997 Phys. Rev. Lett. 78 4769Google Scholar
[5] ITER-EDA 1999 Nucl. Fusion 39 2391Google Scholar
[6] Vianello N, Carralero D, Tsui C K, et al. 2020 Nucl. Fusion 60 016001Google Scholar
[7] Kallenbach A, Bernert M, Beurskens M, et al. 2015 Nucl. Fusion 55 053026Google Scholar
[8] Huber A, Brezinsek S, Groth M, et al. 2013 J. Nucl. Mater. 438 S139Google Scholar
[9] Diamond P H, Itoh S I, Itoh K, Hahm T S 2005 Plasma Phys. Control. Fusion 47 R35Google Scholar
[10] Liang A S, Zhong W L, Zou X L, et al. 2018 Phys. Plasmas 25 022501Google Scholar
[11] Long T, Diamond P H, Xu M, Ke R, Nie L, Li B, Wang Z H, Xu J Q, Duan X R 2019 Nucl. Fusion 59 106010Google Scholar
[12] Long T, Diamond P H, et al. 2021 Nucl. Fusion 61 126066Google Scholar
[13] 龙婷, Diamond P H, 柯锐, 洪荣杰, 许敏, 聂林, 王占辉, 李波, 高金明, HL-2A团队 2022 核聚变与等离子体物理 42 152
Long T, Diamond P H, Ke R, Hong R J, Xu M, Nie L, Wang Z H, Li B, Gao J M, HL-2A Team 2022 Nucl. Fusion Plasma Phys. 42 152
[14] Gao J M, Cai L Z, Zou X L, et al. 2021 Nucl. Fusion 61 066024Google Scholar
[15] Duan X R, Xu M, Zhong W L, et al. 2022 Nucl. Fusion 62 042020Google Scholar
[16] Huang Z H, Cheng J, Wu N, Yan L W, Xu H B, Wang W, Miao X G, Yi K Y, Xu J Q, Cai L Z, Shi Z B, Dong J Q, Liu Y, Zhong W L, Yang Q W, Xu M, Duan X R 2022 Plasma Sci. Technol. 24 054002Google Scholar
[17] Gao J M, Li W, Xia Z W, Pan Y D, Lu J, Yi P, Liu Y 2013 Chin. Phys. B 22 015202Google Scholar
[18] 高金明, 程钧, 严龙文, 李伟, 聂林, 冯北滨, 陈程远, 卢杰, 易萍, 季小全 2015 核聚变与等离子体物理 35 1Google Scholar
Gao J M, Cheng J, Yan L W, Li W, Nie L, Feng B B, Chen C Y, Lu J, Yi P, Ji X Q 2015 Nucl. Fusion Plasma Phys. 35 1Google Scholar
[19] Zheng D L, Zhang K, Cui Z Y, Sun P, Dong C F, Lu P, Fu B Z, Liu Z T, Shi Z B, Yang Q W 2018 Plasma Sci. Technol. 20 105103Google Scholar
[20] Meng L Y, Liu J B, Xu J C, et al. 2020 Plasma Phys. Control. Fusion 62 065008Google Scholar
[21] Wu N, Yi K, Wang W, Huang Z, Yan L, Cheng J, Du H, Shi Z, Zhong W, Xu M 2022 Proceedings of the 6th Asia-Pacific Conference on Plasma Physics, Remote October 9-14, 2022 p1
[22] Wu T, Nie L, Yu Y, Gao J M, Li J Y, Ma H C, Wen J, Ke R, Wu N, Huang Z H, Liu L, Zheng D L, Yi K Y, Gao X Y, Wang W, Cheng J, Yan L W, Cai L Z, Wang Z H, Xu M 2023 Plasma Sci. Technol. 25 015102Google Scholar
[23] Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices (Philadelphia: Institute of Physics Publishing) p84
[24] Nie L, Xu M, Ke R, Yuan B D, Wu Y F, Cheng J, Lan T, Yu Y, Hong R J, Guo D, Ting L, Dong Y B, Zhang Y P, Song X M, Zhong W L, Wang Z H, Sun A P, Xu J Q, Chen W, Yan L W, Zou X L, Duan X R, team H-A 2018 Nucl. Fusion 58 036021Google Scholar
[25] Schmid B, Manz P, Ramisch M, Stroth U 2017 Phys. Rev. Lett. 118 055001Google Scholar
[26] Diamond P H, Kim Y B 1991 Phys. Fluids B 3 1626Google Scholar
[27] Manz P, Xu M, Fedorczak N, Thakur S C, Tynan G R 2012 Phys. Plasmas 19 012309Google Scholar
[28] Shaing K C, Crume E C 1989 Phys. Rev. Lett. 63 2369Google Scholar
[29] Connor J W, Wilson H R 2000 Plasma Phys. Control. Fusion 42 R1Google Scholar
[30] Xu M, Tynan G R, Diamond P H, Manz P, Holland C, Fedorczak N, Thakur S C, Yu J H, Zhao K J, Dong J Q, Cheng J, Hong W Y, Yan L W, Yang Q W, Song X M, Huang Y, Cai L Z, Zhong W L, Shi Z B, Ding X T, Duan X R, Liu Y 2012 Phys. Rev. Lett. 108 245001Google Scholar
[31] Ke R, Wu Y F, McKee G R, Yan Z, Jaehnig K, Xu M, Kriete M, Lu P, Wu T, Morton L A, Qin X, Song X M, Cao J Y, Ding X T, Duan X R 2018 Rev. Sci. Instrum. 89 10D122Google Scholar
[32] Wesson J 2011 Tokamaks (Fourth edition) (Oxford: Oxford University Press) p177
[33] Greenwald M 2002 Plasma Phys. Control. Fusion 44 R27Google Scholar
[34] Simmet E, Team A 1996 Plasma Phys. Control. Fusion 38 689Google Scholar
[35] Zhong W L, Shi Z B, Yang Z J, et al. 2016 Phys. Plasmas 23 060702Google Scholar
计量
- 文章访问数: 2030
- PDF下载量: 105
- 被引次数: 0