搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
引用本文:
Citation:

基于白光中子源的197Au中子辐射俘获截面测量及共振参数分析

罗淏天, 张奇玮, 栾广源, 王晓宇, 邹翀, 任杰, 阮锡超, 贺国珠, 鲍杰, 孙琪, 黄翰雄, 王朝辉, 吴鸿毅, 顾旻皓, 余滔, 解立坤, 陈永浩, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 韩长材, 韩子杰, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 蒋伟, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 羊奕伟, 易晗, 于莉, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏, 朱兴华

Neutron capture reaction cross-section data processing and resonance parameter analysis of 197Au based on white light neutron source

Luo Hao-Tian, Zhang Qi-Wei, Luan Guang-Yuan, Wang Xiao-Yu, Zou Chong, Ren Jie, Ruan Xi-Chao, He Guo-Zhu, Bao Jie, Sun Qi, Huang Han-Xiong, Wang Zhao-Hui, Wu Hong-Yi, Gu Min-Hao, Yu Tao, Xie Li-Kun, Chen Yong-Hao, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Han Chang-Cai, Han Zi-Jie, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Wei, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Yang Yi-Wei, Yi Han, Yu Li, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng, Zhu Xing-Hua
PDF
HTML
导出引用
  • 中子辐射俘获反应在反应堆运行、核装置设计及核天体物理研究中起重要的作用. 4π BaF2探测装置有着高时间分辨能力、低中子灵敏度、高探测效率等优点, 适合开展中子辐射俘获反应截面数据的测量. 中国原子能科学研究院核数据重点实验室建立了伽马全吸收装置(Gamma total absorption facility, GTAF), 该装置用28块六棱BaF2晶体和12块五棱BaF2晶体构成了外径25 cm, 内径10 cm的球壳, 覆盖了95.2%的立体角. 利用GTAF在中国散裂中子源Back-n束线上, 测量了197Au(n, γ)的反应截面数据. 测量数据通过能量筛选、PSD方法、晶体多重性筛选进行了初步本底扣除, 随后结合对natC及空样品的测量数据对本底进行了分析及扣除, 获得了197Au俘获反应的产额, 利用SAMMY程序拟合得到了197Au在1—100 eV的共振能量、中子共振宽度和伽马共振宽度参数. 实验测量结果与ENDF/B-VIII.0数据库符合良好, 其共振参数存在一定差异, 分析原因可能与GTAF能量分辨率、Back-n的中子能谱测量精度、以及实验本底扣除方法相关, 这也是下一步工作的重点.
    Neutron capture reaction is one of the neutron reactions and plays an important role in using reactor control rods and shell materials, designing nuclear device structures, and studying nuclear astrophysics S processes and element origins. The 4π BaF2 detection device has advantages such as high time resolution, low neutron sensitivity, and high detection efficiency, thus making it suitable for measuring neutron radiation capture reaction cross-section data. In order to fill the gap in our neutron capture reaction data in the keV energy range and improve their accuracy, the Key Laboratory of Nuclear Data at the Chinese Institute of Atomic Energy (CIAE) has established a Gamma Total Absorption Facility (GTAF), which consists of 28 hexagonal BaF2 crystals and 12 pentagonal BaF2 crystals to form a spherical shell with an external diameter of 25 cm and an internal diameter of 10 cm, covering 95.2% of the solid angles. The Back-n beam line of the Chinese Spallation Neutron Source (CSNS) is a back-streaming white beam line that covers neutron energy ranging from a few eV to several hundred MeV, making it suitable for measuring neutron capture cross-sections. The reaction cross-section data of 197Au is measured by using GTAF on the Back-n beam line. The measurement data are preliminarily background deducted through energy screening, PSD method, and crystal multiplicity screening. Subsequently, the background is analyzed and deducted based on the measurement data of natC and empty samples, and the yield of 197Au capture reaction is obtained. Resonance parameters are a set of parameters extracted from experimental data to describe the resonance curve, which can eliminate the influence of experimental conditions on resonance data and are more important than the cross-section obtained from experiments. The resonance energy, neutron resonance width, and gamma resonance width parameters of 197Au at 1–100 eV are fitted by using the SAMMY program. From the comparison between the resonance curves obtained from experimental measurements and the resonance parameters obtained from fitting with the ENDF/B-VIII.0 database, it can follow that the experimental measurement results are in good agreement with the database, nevertheless, there exist some differences in the resonance parameter, which may be due to the GTAF energy resolution, Back-n neutron spectrum measurement accuracy, and the experimental background deduction method. Our next work is to identify the sources of difference.
      通信作者: 张奇玮, zqwvictor@126.com ; 阮锡超, xichao_ruan@126.com
    • 基金项目: 国家自然科学基金(批准号: 11975317, 11975318, 12275363)、核数据重点实验室基金(批准号: JCKY2022201C158)和稳定支持基础科研计划(批准号: BJ010261223282)资助的课题.
      Corresponding author: Zhang Qi-Wei, zqwvictor@126.com ; Ruan Xi-Chao, xichao_ruan@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975317, 11975318, 12275363), the Key Laboratory of Nuclear Data Foundation, China (Grant No. JCKY2022201C158), and the Continuous-Support Basic Scientific Research Project, China (Grant No. BJ010261223282).
    [1]

    Palmiotti G, Salvatores M, Assawaroongruengchot M 2009 International Conference on Fast Reactors and Related Fuel Cycles Kyoto, Japan, December 7–11, 2009 pINL/CON-09-17363

    [2]

    Arnould M, Katsuma M 2008 International Conference on Nuclear Data for Science and Technology Nice, France, April 22–27, 2008 p5

    [3]

    Kompe D 1969 Nucl. Phys. 133 513Google Scholar

    [4]

    Wisshak K, Kappeler F, Reffo G 1984 Nucl. Sci. Eng. 88 594Google Scholar

    [5]

    Terada K, Katabuchi T, Mizumoto M, Arai T, Saito T, Igashira M, Hirose K, Nakamura S, Kimura A, Harada H, Hori J, Kino K, Kiyanagi Y 2015 Prog. Nucl. Energy 82 118Google Scholar

    [6]

    Kobayashi K, Lee S, Yamamoto S 2004 Nucl. Sci. Eng. 146 209Google Scholar

    [7]

    Mingrone F, Massimi C, Altstadt S 2014 International Conference on Nuclear Data for Science and Technology New York, USA, March 4–8, 2013 18

    [8]

    Guber K H, Derrien H, Leal L C, Arbanas G, Wiarda D, Koehler P E, Harvey A 2010 Phys. Rev. C 82 057601Google Scholar

    [9]

    Wisshak K, Voss F, Kaeppeler F, Krticka M, Gallino R 2006 Phys. Rev. C 73 015802Google Scholar

    [10]

    Mendoza E, Cano-Ott D, Altstadt S, et al. 2018 Phys. Rev. C 97 054616Google Scholar

    [11]

    Mosby S, Bredeweg T A, Couture A, Jandel M, Kawano T, Ullmann J L, Henderson R A, Wu C Y 2018 Phys. Rev. C 97 041601Google Scholar

    [12]

    石斌, 彭猛, 张奇玮, 贺国珠, 周祖英, 唐洪庆 2018 原子能科学技术 52 1537Google Scholar

    Shi B, Peng M, Zhang Q W, He G Z, Zhou Z Y, Tang H Q 2018 At. Energy Sci. Technol. 52 1537Google Scholar

    [13]

    唐靖宇, 安琪, 白怀勇等 2019 原子能科学技术 53 2012Google Scholar

    Tang J Y, An Q, Bai H Y, et al. 2019 At. Energy Sci. Technol. 53 2012Google Scholar

    [14]

    丁大钊, 叶春堂, 赵志祥1996 中子物理学——原理、方法与应用 (北京: 原子能出版社) 第387—389页

    Ding D Z, Ye C T, Zhao Z X 1996 Neutron Physics-Principles, Methods, and Applications (Beijing: Atomic Energy Press) pp387–389

    [15]

    卢希庭等 2000 原子核物理 (北京: 原子能出版社) 第263—267页

    Lu X T 2000 Nuclear Physics (Beijing: Atomic Energy Press) pp263–267

    [16]

    An Q, Bai H Y, Bao J, et al. 2017 J. Instrum. 12 7022Google Scholar

    [17]

    Tang J Y, Fu S N, Jing H T, Tang H Q, Wei J, Xia H H 2010 Chin. Phys. C 34 121Google Scholar

    [18]

    Jing H T, Tang J Y, Tang H Q, Xia H H, Liang T J, Zhou Z Y, Zhong Q P, Ruan X C 2010 Nucl. Instrum. Methods Phys. Res. , Sect. A 621 91Google Scholar

    [19]

    唐靖宇, 敬罕涛, 夏海鸿, 唐洪庆, 张闯, 周祖英, 阮锡超, 张奇玮, 杨征 2013 原子能科学技术 47 1089Google Scholar

    Tang J Y, Jing H T, Xia H H, Tang H Q, Zhang C, Zhou Z Y, Ruan X C, Zhang Q W, Yang Z 2013 At. Energy Sci. Technol. 47 1089Google Scholar

    [20]

    任杰, 阮锡超, 唐洪庆, 葛智刚, 黄翰雄, 敬罕涛, 唐靖宇, 黄蔚玲 2014 核技术 37 100521Google Scholar

    Ren J, Ruan X C, Tang H Q, Ge Z G, Huang H X, Jing H T, Tang J Y, Huang W L 2014 Nucl. Tech. 37 100521Google Scholar

    [21]

    Chen Y H, Luan G Y, Bao J, et al. 2019 Eur. Phys. J. A 55 115Google Scholar

    [22]

    张奇玮, 栾广源, 任杰等 2021 物理学报 70 222801Google Scholar

    Zhang Q W, Luan G Y, Ren J, et al. 2021 Acta Phys. Sin. 70 222801Google Scholar

    [23]

    Heil M, Reifarth R, Fowler M M, et al. 2019 IEEE Trans. Nucl. Sci. 66 1095Google Scholar

    [24]

    Wang Q, Cao P, Qi X, Yu T, Ji X, Xie L, An Q S 2018 Rev. Sci. Instrum. 89 013511Google Scholar

    [25]

    张奇玮, 贺国珠, 黄兴, 程品晶, 阮锡超, 朱兴华 2016 原子能科学技术 50 536Google Scholar

    Zhang Q W, He G Z, Huang X, Cheng P J, Ruan X C, Zhu X H 2016 At. Energy Sci. Technol. 50 536Google Scholar

    [26]

    张奇玮, 贺国珠, 黄兴, 阮锡超, 李志宏, 朱兴华 2014 原子能科学技术 48 612Google Scholar

    Zhang Q W, He G Z, Huang X, Ruan X C, Li Z H, Zhu X H 2014 At. Energy Sci. Technol. 48 612Google Scholar

    [27]

    Fröhner F H 1980 Applied Neutron Resonance Theory (Karlsruhe: Kernforschungszentrum Karlsruhe GmbHP

    [28]

    Lane A M, Thomas R G 1958 Rev. Mod. Phys. 30 257Google Scholar

    [29]

    Larson N M 2008 Updated User’s Guide for Sammy: Multilevel R-Matrix Fits to Neutron Data Using Bayes’ Equations ORNL/TM-9179/R8 ENDF-364/R2

  • 图 1  中子辐射俘获反应退激示意图

    Fig. 1.  Schematic diagram of deexcitation of neutron capture reaction.

    图 2  反角白光束线示意图

    Fig. 2.  Schematic diagram of Back-n.

    图 3  GTAF照片

    Fig. 3.  Photos of GTAF.

    图 4  数据获取系统照片

    Fig. 4.  Photo of data acquisition system.

    图 5  实验得到的能谱

    Fig. 5.  Energy spectrum obtained from experiment.

    图 6  实验记录的晶体多重数

    Fig. 6.  Experimentally recorded crystal multiplicity.

    图 7  PSD-ADC channel二维谱

    Fig. 7.  Two-dimensional spectrum of PSD-ADC channel.

    图 8  不同吸收片的条件下197Au样品和各本底的TOF谱

    Fig. 8.  TOF spectra of 197Au samples under different absorber conditions and various backgrounds.

    图 9  197Au共振曲线的实验值和理论值对比

    Fig. 9.  Comparison between experimental values and theoretical values of 197Au resonance curves.

    图 10  SAMMY拟合结果与实验数据对比图

    Fig. 10.  Comparison of SAMMY fitting results and experimental data.

    表 1  实验样品参数

    Table 1.  Characteristics of experimental samples.

    样品直径/mm厚度/mm密度/(g⋅cm–3)
    197Au400.219.32
    natC401.02.25
    下载: 导出CSV

    表 2  197Au自旋组信息

    Table 2.  Information of spin groups of 197Au.

    自旋组基态自旋中子自旋总自旋角动量轨道角动量总角动量
    1+1.5–0.5+10+1
    2+1.5+0.5+20+2
    下载: 导出CSV

    表 3  SAMMY拟合的共振参数与ENDF/B-VIII.0对比

    Table 3.  Comparison of resonance parameters fitted by SAMMY and ENDF/B-VIII.0.

    能量/eV 中子共振宽度/meV 伽马共振宽度/meV
    拟合值 ENDF/B-VIII.0 拟合值 ENDF/B-VIII.0 拟合值 ENDF/B-VIII.0
    4.93709 4.8997 17.6345 1.496 121.9605 121.4
    46.5717 46.669 0.20511 0.22 190.5456 127
    57.9329 58.078 4.99505 0.431 175.7 113
    59.9007 60.2914 137.619 7.066 115.4935 118
    78.2631 78.5 34.3565 17 125.296 124
    下载: 导出CSV
  • [1]

    Palmiotti G, Salvatores M, Assawaroongruengchot M 2009 International Conference on Fast Reactors and Related Fuel Cycles Kyoto, Japan, December 7–11, 2009 pINL/CON-09-17363

    [2]

    Arnould M, Katsuma M 2008 International Conference on Nuclear Data for Science and Technology Nice, France, April 22–27, 2008 p5

    [3]

    Kompe D 1969 Nucl. Phys. 133 513Google Scholar

    [4]

    Wisshak K, Kappeler F, Reffo G 1984 Nucl. Sci. Eng. 88 594Google Scholar

    [5]

    Terada K, Katabuchi T, Mizumoto M, Arai T, Saito T, Igashira M, Hirose K, Nakamura S, Kimura A, Harada H, Hori J, Kino K, Kiyanagi Y 2015 Prog. Nucl. Energy 82 118Google Scholar

    [6]

    Kobayashi K, Lee S, Yamamoto S 2004 Nucl. Sci. Eng. 146 209Google Scholar

    [7]

    Mingrone F, Massimi C, Altstadt S 2014 International Conference on Nuclear Data for Science and Technology New York, USA, March 4–8, 2013 18

    [8]

    Guber K H, Derrien H, Leal L C, Arbanas G, Wiarda D, Koehler P E, Harvey A 2010 Phys. Rev. C 82 057601Google Scholar

    [9]

    Wisshak K, Voss F, Kaeppeler F, Krticka M, Gallino R 2006 Phys. Rev. C 73 015802Google Scholar

    [10]

    Mendoza E, Cano-Ott D, Altstadt S, et al. 2018 Phys. Rev. C 97 054616Google Scholar

    [11]

    Mosby S, Bredeweg T A, Couture A, Jandel M, Kawano T, Ullmann J L, Henderson R A, Wu C Y 2018 Phys. Rev. C 97 041601Google Scholar

    [12]

    石斌, 彭猛, 张奇玮, 贺国珠, 周祖英, 唐洪庆 2018 原子能科学技术 52 1537Google Scholar

    Shi B, Peng M, Zhang Q W, He G Z, Zhou Z Y, Tang H Q 2018 At. Energy Sci. Technol. 52 1537Google Scholar

    [13]

    唐靖宇, 安琪, 白怀勇等 2019 原子能科学技术 53 2012Google Scholar

    Tang J Y, An Q, Bai H Y, et al. 2019 At. Energy Sci. Technol. 53 2012Google Scholar

    [14]

    丁大钊, 叶春堂, 赵志祥1996 中子物理学——原理、方法与应用 (北京: 原子能出版社) 第387—389页

    Ding D Z, Ye C T, Zhao Z X 1996 Neutron Physics-Principles, Methods, and Applications (Beijing: Atomic Energy Press) pp387–389

    [15]

    卢希庭等 2000 原子核物理 (北京: 原子能出版社) 第263—267页

    Lu X T 2000 Nuclear Physics (Beijing: Atomic Energy Press) pp263–267

    [16]

    An Q, Bai H Y, Bao J, et al. 2017 J. Instrum. 12 7022Google Scholar

    [17]

    Tang J Y, Fu S N, Jing H T, Tang H Q, Wei J, Xia H H 2010 Chin. Phys. C 34 121Google Scholar

    [18]

    Jing H T, Tang J Y, Tang H Q, Xia H H, Liang T J, Zhou Z Y, Zhong Q P, Ruan X C 2010 Nucl. Instrum. Methods Phys. Res. , Sect. A 621 91Google Scholar

    [19]

    唐靖宇, 敬罕涛, 夏海鸿, 唐洪庆, 张闯, 周祖英, 阮锡超, 张奇玮, 杨征 2013 原子能科学技术 47 1089Google Scholar

    Tang J Y, Jing H T, Xia H H, Tang H Q, Zhang C, Zhou Z Y, Ruan X C, Zhang Q W, Yang Z 2013 At. Energy Sci. Technol. 47 1089Google Scholar

    [20]

    任杰, 阮锡超, 唐洪庆, 葛智刚, 黄翰雄, 敬罕涛, 唐靖宇, 黄蔚玲 2014 核技术 37 100521Google Scholar

    Ren J, Ruan X C, Tang H Q, Ge Z G, Huang H X, Jing H T, Tang J Y, Huang W L 2014 Nucl. Tech. 37 100521Google Scholar

    [21]

    Chen Y H, Luan G Y, Bao J, et al. 2019 Eur. Phys. J. A 55 115Google Scholar

    [22]

    张奇玮, 栾广源, 任杰等 2021 物理学报 70 222801Google Scholar

    Zhang Q W, Luan G Y, Ren J, et al. 2021 Acta Phys. Sin. 70 222801Google Scholar

    [23]

    Heil M, Reifarth R, Fowler M M, et al. 2019 IEEE Trans. Nucl. Sci. 66 1095Google Scholar

    [24]

    Wang Q, Cao P, Qi X, Yu T, Ji X, Xie L, An Q S 2018 Rev. Sci. Instrum. 89 013511Google Scholar

    [25]

    张奇玮, 贺国珠, 黄兴, 程品晶, 阮锡超, 朱兴华 2016 原子能科学技术 50 536Google Scholar

    Zhang Q W, He G Z, Huang X, Cheng P J, Ruan X C, Zhu X H 2016 At. Energy Sci. Technol. 50 536Google Scholar

    [26]

    张奇玮, 贺国珠, 黄兴, 阮锡超, 李志宏, 朱兴华 2014 原子能科学技术 48 612Google Scholar

    Zhang Q W, He G Z, Huang X, Ruan X C, Li Z H, Zhu X H 2014 At. Energy Sci. Technol. 48 612Google Scholar

    [27]

    Fröhner F H 1980 Applied Neutron Resonance Theory (Karlsruhe: Kernforschungszentrum Karlsruhe GmbHP

    [28]

    Lane A M, Thomas R G 1958 Rev. Mod. Phys. 30 257Google Scholar

    [29]

    Larson N M 2008 Updated User’s Guide for Sammy: Multilevel R-Matrix Fits to Neutron Data Using Bayes’ Equations ORNL/TM-9179/R8 ENDF-364/R2

  • [1] 曹嵩, 殷雯, 周斌, 胡志良, 沈飞, 易天成, 王松林, 梁天骄. 中国散裂中子源二期靶站关键部件辐照损伤模拟计算. 物理学报, 2024, 73(9): 092501. doi: 10.7498/aps.73.20240088
    [2] 李强, 李样, 吕游, 潘子文, 鲍煜. 中国散裂中子源缪子谱仪及其应用展望. 物理学报, 2024, 73(19): 197602. doi: 10.7498/aps.73.20240926
    [3] 肖石良, 王朝辉, 吴鸿毅, 陈雄军, 孙琪, 谭博宇, 王昊, 齐福刚. 中子诱发伽马产生截面测量中的谱分析技术. 物理学报, 2024, 73(7): 072901. doi: 10.7498/aps.73.20231980
    [4] 冯凯源, 邵福球, 蒋祥瑞, 邹德滨, 胡理想, 张国博, 杨晓虎, 银燕, 马燕云, 余同普. 双束对射激光驱动超薄靶的超短脉冲中子源. 物理学报, 2023, 72(18): 185201. doi: 10.7498/aps.72.20230706
    [5] 张江林, 姜炳, 陈永浩, 郭子安, 王小鹤, 蒋伟, 易晗, 韩建龙, 胡继峰, 唐靖宇, 陈金根, 蔡翔舟. 基于中国散裂中子源反角白光中子束线的天然锂中子全截面测量. 物理学报, 2022, 71(5): 052901. doi: 10.7498/aps.71.20211646
    [6] 蒋伟, 江浩雨, 易晗, 樊瑞睿, 崔增琪, 孙康, 张国辉, 唐靖宇, 孙志嘉, 宁常军, 高可庆, 安琪, 白怀勇, 鲍杰, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈永浩, 陈裕凯, 陈朕, 封常青, 顾旻皓, 韩长材, 韩子杰, 贺国珠, 何泳成, 洪杨, 黄翰雄, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 栾广源, 穆奇丽, 齐斌斌, 任杰, 任智洲, 阮锡超, 宋朝晖, 宋英鹏, 孙虹, 孙晓阳, 谭志新, 唐洪庆, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 王朝辉, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 于莉, 余滔, 于永积, 张林浩, 张奇玮, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏, CSNS Back-n合作组 . 基于反角白光中子源次级质子的探测器标定. 物理学报, 2021, 70(8): 082901. doi: 10.7498/aps.70.20201823
    [7] 张奇玮, 栾广源, 任杰, 阮锡超, 贺国珠, 鲍杰, 孙琪, 黄翰雄, 王朝辉, 顾旻皓, 余滔, 解立坤, 陈永浩, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 韩长材, 韩子杰, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 蒋伟, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 羊奕伟, 易晗, 于莉, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏, 朱兴华. 基于CSNS反角白光中子源的中子俘获反应截面测量技术研究. 物理学报, 2021, 70(22): 222801. doi: 10.7498/aps.70.20210742
    [8] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 基于中国散裂中子源的商用静态随机存取存储器中子单粒子效应实验研究. 物理学报, 2020, 69(16): 162901. doi: 10.7498/aps.69.20200265
    [9] 任杰, 阮锡超, 陈永浩, 蒋伟, 鲍杰, 栾广源, 张奇玮, 黄翰雄, 王朝辉, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 顾旻皓, 韩长材, 韩子杰, 贺国珠, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 易晗, 于莉, 余滔, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏. 中国散裂中子源反角白光中子源束内伽马射线研究. 物理学报, 2020, 69(17): 172901. doi: 10.7498/aps.69.20200718
    [10] 胡志良, 杨卫涛, 李永宏, 李洋, 贺朝会, 王松林, 周斌, 于全芝, 何欢, 谢飞, 白雨蓉, 梁天骄. 应用中国散裂中子源9号束线端研究65 nm微控制器大气中子单粒子效应. 物理学报, 2019, 68(23): 238502. doi: 10.7498/aps.68.20191196
    [11] 詹霞, JoeKelleher, 高建波, 马艳玲, 初铭强, 张书彦, 张鹏, SanjooramPaddea, 贡志锋, 侯晓东. 英国散裂中子源工程材料原位加载衍射实验高温样品环境优化设计. 物理学报, 2019, 68(13): 132901. doi: 10.7498/aps.68.20182295
    [12] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 中国散裂中子源在大气中子单粒子效应研究中的应用评估. 物理学报, 2019, 68(5): 052901. doi: 10.7498/aps.68.20181843
    [13] 鲍杰, 陈永浩, 张显鹏, 栾广源, 任杰, 王琦, 阮锡超, 张凯, 安琪, 白怀勇, 曹平, 陈琪萍, 程品晶, 崔增琪, 樊瑞睿, 封常青, 顾旻皓, 郭凤琴, 韩长材, 韩子杰, 贺国珠, 何泳成, 何越峰, 黄翰雄, 黄蔚玲, 黄锡汝, 季筱路, 吉旭阳, 江浩雨, 蒋伟, 敬罕涛, 康玲, 康明涛, 兰长林, 李波, 李论, 李强, 李晓, 李阳, 李样, 刘荣, 刘树彬, 刘星言, 马应林, 宁常军, 聂阳波, 齐斌斌, 宋朝晖, 孙虹, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 王鹏程, 王涛峰, 王艳凤, 王朝辉, 王征, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 杨毅, 易晗, 于莉, 余滔, 于永积, 张国辉, 张旌, 张林浩, 张利英, 张清民, 张奇伟, 张玉亮, 张志永, 赵映潭, 周良, 周祖英, 朱丹阳, 朱科军, 朱鹏. 更正:中国散裂中子源反角白光中子束流参数的初步测量. 物理学报, 2019, 68(10): 109901. doi: 10.7498/aps.68.109901
    [14] 鲍杰, 陈永浩, 张显鹏, 栾广源, 任杰, 王琦, 阮锡超, 张凯, 安琪, 白怀勇, 曹平, 陈琪萍, 程品晶, 崔增琪, 樊瑞睿, 封常青, 顾旻皓, 郭凤琴, 韩长材, 韩子杰, 贺国珠, 何泳成, 何越峰, 黄翰雄, 黄蔚玲, 黄锡汝, 季筱路, 吉旭阳, 江浩雨, 蒋伟, 敬罕涛, 康玲, 康明涛, 兰长林, 李波, 李论, 李强, 李晓, 李阳, 李样, 刘荣, 刘树彬, 刘星言, 马应林, 宁常军, 聂阳波, 齐斌斌, 宋朝晖, 孙虹, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 王鹏程, 王涛峰, 王艳凤, 王朝辉, 王征, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 杨毅, 易晗, 于莉, 余滔, 于永积, 张国辉, 张旌, 张林浩, 张利英, 张清民, 张奇伟, 张玉亮, 张志永, 赵映潭, 周良, 周祖英, 朱丹阳, 朱科军, 朱鹏. 中国散裂中子源反角白光中子束流参数的初步测量. 物理学报, 2019, 68(8): 080101. doi: 10.7498/aps.68.20182191
    [15] 温志文, 祁辉荣, 张余炼, 王海云, 刘凌, 王艳凤, 张建, 李玉红, 孙志嘉. 用于中国散裂中子源多功能反射谱仪的高气压多丝正比室探测器的研制. 物理学报, 2018, 67(7): 072901. doi: 10.7498/aps.67.20172618
    [16] 沈飞, 梁泰然, 殷雯, 于全芝, 左太森, 姚泽恩, 朱涛, 梁天骄. 中国散裂中子源多功能反射谱仪屏蔽设计. 物理学报, 2014, 63(15): 152801. doi: 10.7498/aps.63.152801
    [17] 羊奕伟, 刘荣, 严小松. 钍俘获反应率离线伽马测量方法. 物理学报, 2013, 62(3): 032801. doi: 10.7498/aps.62.032801
    [18] 王胜, 邹宇斌, 温伟伟, 李航, 刘树全, 王浒, 陆元荣, 唐国有, 郭之虞. 基于小型加速器的编码中子源成像研究. 物理学报, 2013, 62(12): 122801. doi: 10.7498/aps.62.122801
    [19] 于全芝, 殷雯, 梁天骄. 中国散裂中子源靶站重要部件的辐照损伤计算与分析. 物理学报, 2011, 60(5): 052501. doi: 10.7498/aps.60.052501
    [20] 傅德基, 蔡廷璜, 夏克定. Th232与U238中子俘获截面的计算. 物理学报, 1974, 23(3): 52-60. doi: 10.7498/aps.23.52-2
计量
  • 文章访问数:  3229
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-12
  • 修回日期:  2024-01-11
  • 上网日期:  2024-01-24
  • 刊出日期:  2024-04-05

/

返回文章
返回