搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

界面电子结构对核壳量子点/聚乙烯纳米复合绝缘电导与空间电荷特性的影响

王赫宇 李忠磊 杜伯学

引用本文:
Citation:

界面电子结构对核壳量子点/聚乙烯纳米复合绝缘电导与空间电荷特性的影响

王赫宇, 李忠磊, 杜伯学

Effect of interfacial electronic structure on conductivity and space charge characteristics of core-shell quantum dots/polyethylene nanocomposite insulation

Wang He-Yu, Li Zhong-Lei, Du Bo-Xue
PDF
HTML
导出引用
  • 为研究核壳量子点的界面电子结构对聚乙烯绝缘电导与空间电荷特性的影响, 分别制备了CdSe@ZnS/LDPE, ZnSe@ZnS/LDPE两种核壳量子点纳米复合绝缘, 研究了复合绝缘的直流电导和空间电荷的演变规律, 并分析了核壳量子点的界面电子结构对电荷陷阱分布特性的影响机理. 研究发现, 相比于LDPE绝缘, ZnSe@ZnS/LDPE复合绝缘在高温强场条件下直流电导率可降低47.2%, 空间电荷积累量降低了40.3%, 且陷阱能级增大, 表现出对载流子更强的捕获作用. 基于密度泛函理论, 计算了核壳量子点与聚乙烯绝缘的能带特征. 结果表明, 核壳纳米量子点的核层-壳层界面、壳层-绝缘界面的能带偏移导致导带底与价带顶发生突变, 分别对电子和空穴具有限域作用, 且限域效应随着量子点核层与壳层带隙差异增大而逐渐增强, 从而限制高温强场下载流子迁移、抑制空间电荷积聚.
    To investigate the effect of the interface electronic structure of core-shell quantum dots on the conductivity and space charge characteristics of polyethylene insulation, nanocomposite insulations, namely CdSe@ZnS/LDPE and ZnSe@ZnS/LDPE, are synthesized. The study focuses on elucidating the evolution patterns of DC conductivity and space charge in the nanocomposite insulation, and analyzing the effect of the interfacial electronic structure of core-shell quantum dots on the distribution of charge traps. Comparative analysis reveals that in contrast to LDPE insulation, ZnSe@ZnS/LDPE nanocomposite insulation demonstrates a substantial reduction in DC conductivity by 47.2% and a decrease in space charge accumulation by 40.3% under the conditions of elevated temperature and strong electric field. The increase of trap energy level means an enhanced trap effect on charger carriers. According to density functional theory, the band structure characteristics of core-shell quantum dots integrated with polyethylene are computationally assessed. The findings underscore that the band misalignment at the core-shell interface and the shell-insulation interface induces shifts in the conduction band bottom and at the valence band top, respectively. These shifts impose a confinement effect on electrons and holes, with the extent of this effect escalating with the augment of the difference in band gap between the core layer and the shell layer. Consequently, this phenomenon curtails carrier migration, thereby inhibiting space charge accumulation under the conditions of elevated temperature and strong electric fields.
      通信作者: 李忠磊, lizhonglei@tju.edu.cn ; 杜伯学, duboxue@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52077148)、国家自然科学基金-智能电网联合基金(批准号: U1966203)和云南省科技厅重大科技专项(批准号: 202202AC080002)资助课题.
      Corresponding author: Li Zhong-Lei, lizhonglei@tju.edu.cn ; Du Bo-Xue, duboxue@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52077148), the Joint Fund of the National Natural Science Foundation of China and the Smart Grid (Grant No. U1966203), and the Major Project of Science and Technology Department of Yunnan Province, China (Grant No. 202202AC080002).
    [1]

    俞葆青, 夏兵, 杨晓砚, 万宝全, 查俊伟 2023 物理学报 72 068402Google Scholar

    Yu B Q, Xia B, Yang X Y, Wan B Q, Zha J W 2023 Acta Phys. Sin. 72 068402Google Scholar

    [2]

    Li Z L, Du B X 2018 IEEE Electr. Insul. Mag. 34 30Google Scholar

    [3]

    杜伯学, 韩晨磊, 李进, 李忠磊 2019 电工技术学报 34 179Google Scholar

    Du B X, Han C L, Li J, Li Z L 2019 Trans. Chin. Electrotech. Soc. 34 179Google Scholar

    [4]

    何金良, 党斌, 周垚, 胡军 2015 高电压技术 41 1417Google Scholar

    He J L, Dang B, Zhou Y, Hu J 2015 High Voltage Eng. 41 1417Google Scholar

    [5]

    Mazzanti G, Diban B 2021 IEEE Trans. Power Delivery 36 3784Google Scholar

    [6]

    Lewis T J 2014 IEEE Trans. Dielectr. Electr. Insul. 21 497Google Scholar

    [7]

    Tanaka T, Kozako M, Fuse N, Ohki Y 2005 IEEE Trans. Dielectr. Electr. Insul. 12 669Google Scholar

    [8]

    Takada T, Hayase Y, Tanaka Y 2008 IEEE Trans. Dielectr. Electr. Insul. 15 152Google Scholar

    [9]

    Zhu X, Wu J, Wang Y, Yin Y 2020 IEEE Trans. Dielectr. Electr. Insul. 27 450Google Scholar

    [10]

    Li S T, Zhao N, Nie Y J, Wang X, Chen G, Teyssedre G 2015 IEEE Trans. Dielectr. Electr. Insul. 22 92Google Scholar

    [11]

    Ye C, Zhang D S, Chen B, Tung C H, Wu L Z 2023 Chem. Phys. Rev. 4 011304Google Scholar

    [12]

    Han C L, Du B X, Li J, Li Z L, Tanaka T 2020 IEEE Trans. Dielectr. Electr. Insul. 27 1204Google Scholar

    [13]

    Yang M, Wang S, Fu J, Zhu Y, Liang J, Cheng S, Hu S, Hu J, He J, Li Q 2023 Adv. Mater. 35 2301936Google Scholar

    [14]

    Smith A M, Lane L A, Nie S M 2014 Nat. Commun. 5 4506Google Scholar

    [15]

    Tanaka T 2019 IEEE Trans. Dielectr. Electr. Insul. 26 276Google Scholar

    [16]

    Lei Z P, Fabiani D, Bray T, Li C Y, Wang X Y, Andritsch T, Credi A, La Rosa M 2021 IEEE Trans. Dielectr. Electr. Insul. 28 753Google Scholar

    [17]

    Moyassari A, Unge M, Hedenqvist M S, Gedde U W, Nilsson F 2017 J. Chem. Phys. 146 204901Google Scholar

    [18]

    Chen X, Zhao A X, Li J M, Deng J B, Zhang G J, Zhao X F 2019 J. Appl. Phys. 126 035101Google Scholar

    [19]

    Lü Z P, Ma Y T, Zhang C, Peng J Y, Wu K, Dissado L A 2021 IEEE Trans. Dielectr. Electr. Insul. 28 616Google Scholar

    [20]

    Simmons J G, Tam M C 1973 Phys. Rev. B 7 3706Google Scholar

    [21]

    Cheng S, Zhou Y, Li Y, Yuan C, Yang M, Fu J, Hu J, He J, Li Q 2021 Energy Storage Mater. 42 445Google Scholar

    [22]

    董久锋, 邓星磊, 牛玉娟, 潘子钊, 汪宏 2020 物理学报 69 217701Google Scholar

    Dong J F, Deng X L, Niu Y J, Pan Z Z, Wang H 2020 Acta Phys. Sin. 69 217701Google Scholar

    [23]

    Emtage P R, Tantraporn W 1962 Phys. Rev. Lett. 8 267Google Scholar

    [24]

    Hoang A T, Pallon L, Liu D, Serdyuk Y V, Gubanski S M, Gedde U W 2016 Polymers 8 87Google Scholar

    [25]

    Zhou L, Wang X, Zhang Y, Zhang P, Li Z 2019 Materials 12 2657Google Scholar

    [26]

    Akram S, Bhutta M S, Zhou K, Meng P F, Castellon J, Wang P, Rasool G, Aamir M, Nazir M T 2021 IEEE Trans. Dielectr. Electr. Insul. 28 1514Google Scholar

    [27]

    Fishchuk I I, Kadashchuk A K, Vakhnin A, Korosko Y, Bässler H, Souharce B, Scherf U 2006 Phys. Rev. B 73 115210Google Scholar

    [28]

    Li C, Duan L, Li H, Qiu Y 2014 J. Phys. Chem. C 118 10651Google Scholar

    [29]

    屠德民, 王霞, 吕泽鹏, 吴锴, 彭宗仁 2012 物理学报 61 01704Google Scholar

    Tu D M, Wang X, Lv Z P, Wu K, Peng Z R 2012 Acta Phys. Sin. 61 01704Google Scholar

    [30]

    张睿智, 陈文灏, 杨璐娜 2012 物理学报 61 187201Google Scholar

    Zhang R Z, Chen W H, Yang L N 2012 Acta Phys. Sin. 61 187201Google Scholar

    [31]

    Hewa-Kasakarage N N, Kirsanova M, Nemchinov A, Schmall N, El-Khoury P Z, Tarnovsky A N, Zamkov M 2009 J. Am. Chem. Soc. 131 1320Google Scholar

    [32]

    Chen X H, Chen Y T, Ren F F, Gu S L, Tan H H, Jagadish C, Ye J D 2019 Appl. Phys. Lett. 115 202101Google Scholar

  • 图 1  核壳量子点/聚乙烯纳米复合绝缘制备流程

    Fig. 1.  Preparation method of quantum dots/PE composite insulation.

    图 2  核壳量子点/聚乙烯复合绝缘的理化性能表征(1 cps = 1 counts/s) (a) CdSe@ZnS量子点TEM图; (b) CdSe@ZnS量子点粒径分布; (c) ZnSe@ZnS量子点TEM图; (d) ZnSe@ZnS量子点粒径分布; (e) QD1/PE绝缘TEM图; (f) QD1/PE绝缘EDS谱图; (g) QD2/PE绝缘TEM图; (h) QD2/PE绝缘EDS谱图; (i) 核壳量子点/聚乙烯复合绝缘XPS全谱; (j)—(m) Cd, Zn, Se和S元素精细谱; (n) 核壳量子点/聚乙烯复合绝缘UV-Vis吸收谱; (o)—(q) 核壳量子点/聚乙烯复合绝缘光学带隙

    Fig. 2.  Characterization of physical and chemical properties of core-shell quantum dots/polyethylene composite insulation: (a) TEM of CdSe@ZnS QDs; (b) particle size distribution of CdSe@ZnS QDs; (c) TEM of ZnSe@ZnS QDs; (d) particle size distribution of ZnSe@ZnS QDs; (e) TEM of QD1/PE insulation; (f) EDS of QD1/PE insulation; (g) TEM of QD2/PE insulation; (h) EDS of QD2/PE insulation; (i) XPS full spectra of composite insulation; (j)–(m) XPS fine spectra of Cd, Zn, Se, and S; (n) UV-Vis absorption spectra of composite insulation; (o)–(q) optical gap of composite insulation.

    图 3  聚乙烯绝缘和核壳量子点/聚乙烯复合绝缘的电导特性 (a)—(c) PE, QD1/PE和QD2/PE绝缘电导特性; (d)—(f) 基于跳跃电导模型的PE, QD1/PE和QD2/PE绝缘电导特性; (g)—(i) 基于P-F发射效应的PE, QD1/PE和QD2/PE绝缘电导特性; (j)—(l) 基于肖特基发射效应的PE, QD1/PE和QD2/PE绝缘电导特性

    Fig. 3.  Conductivity characteristics of polyethylene insulation and core-shell quantum dot/polyethylene composite insulation: (a)–(c) Current density characteristics of PE, QD1/PE and QD2/PE insulation; (d)–(f) conductivity characteristics of PE, QD1/PE and QD2/PE insulation based on hopping conductivity model; (g)–(i) conductivity characteristics of PE, QD1/PE and QD2/PE insulation based on P-F emission effect; (j)–(l) conductivity characteristics of PE, QD1/PE and QD2/PE insulation based on Schottky emission effect.

    图 4  聚乙烯绝缘和核壳量子点/聚乙烯复合绝缘的空间电荷特性 (a) PE绝缘极化过程; (b) QD1/PE绝缘极化过程; (c) QD2/PE绝缘极化过程; (d) 极化过程平均空间电荷密度变化情况; (e) PE绝缘去极化过程; (f) QD1/PE绝缘去极化过程; (g) QD2/PE绝缘去极化过程; (h) 去极化过程平均空间电荷密度变化情况

    Fig. 4.  Space charge characteristics of polyethylene insulation and core-shell quantum dot/polyethylene composite insulation: (a) Polarization of PE insulation; (b) polarization of QD1/PE insulation; (c) polarization of QD2/PE insulation; (d) average space charge density during the polarization process; (e) depolarization process of PE insulation; (f) depolarization process of QD1/PE insulation; (g) depolarization process of QD2/PE insulation; (h) average space charge density during the depolarization process.

    图 5  聚乙烯绝缘和核壳量子点/聚乙烯复合绝缘的陷阱特性

    Fig. 5.  Trap characteristics of polyethylene insulation and core-shell quantum dots/polyethylene composite insulation.

    图 6  核壳量子点与聚乙烯绝缘的能带结构与态密度 (a) CdSe晶体模型; (b) CdSe能带结构与态密度; (c) ZnSe晶体模型; (d) ZnSe能带结构与态密度; (e) ZnS晶体模型; (f) ZnS能带结构与态密度; (g) PE晶体模型; (h) PE能带结构与态密度

    Fig. 6.  Band structures and density of states of core-shell quantum dots and polyethylene: (a) CdSe crystal model; (b) CdSe band structure and DOS; (c) ZnSe crystal model; (d) ZnSe band structure and DOS; (e) ZnS crystal model; (f) ZnS band structure and DOS; (g) PE crystal model; (h) PE band structure and DOS.

    图 7  核壳量子点/聚乙烯绝缘的界面结合能、差分电荷密度与界面能带结构 (a) 不同界面的结合能变化情况; (b) ZnS-聚乙烯界面的差分电子密度; (c) CdSe-ZnS界面的差分电子密度; (d) ZnSe-ZnS界面的差分电子密度; (e) PE-ZnS界面能带结构; (f) CdSe-ZnS界面能带结构; (g) ZnSe-ZnS界面能带结构

    Fig. 7.  Binding energy, electron density difference, and band structure of interface for core-shell quantum dot/polyethylene insulation: (a) Binding energy of different interfaces; (b) electron density difference between ZnS and PE; (c) electron density difference between CdSe and ZnS; (d) electron density difference between ZnSe and ZnS; (e) band structure between PE and ZnS; (f) band structure between CdSe and ZnS; (g) band structure between ZnSe and ZnS.

    图 8  核壳量子点界面结构对聚乙烯绝缘中载流子迁移的影响

    Fig. 8.  Effect of interface structure with core-shell quantum dots on carrier migration in polyethylene-based insulation.

    表 1  核壳量子点与聚乙烯的能带结构特征

    Table 1.  Band characteristics of core-shell quantum dots and polyethylene.

    结构 能带间隙
    Eg/eV
    带隙类型 电子有效质量
    $m_{\rm n}^*{\mathrm{ /a.u.}}$
    空穴有效质量
    $m_{\rm p}^*{\mathrm{ /a.u.}}$
    电子亲和能
    χ/eV
    功函数
    W/eV
    CdSe 2.06 直接带隙 0.14 0.39 4.85 5.38
    ZnSe 2.77 直接带隙 0.18 0.54 4.37 5.10
    ZnS 3.44 直接带隙 0.24 0.55 3.96 4.71
    PE 8.80 直接带隙 >10 >10 –2.45 5.42
    下载: 导出CSV
  • [1]

    俞葆青, 夏兵, 杨晓砚, 万宝全, 查俊伟 2023 物理学报 72 068402Google Scholar

    Yu B Q, Xia B, Yang X Y, Wan B Q, Zha J W 2023 Acta Phys. Sin. 72 068402Google Scholar

    [2]

    Li Z L, Du B X 2018 IEEE Electr. Insul. Mag. 34 30Google Scholar

    [3]

    杜伯学, 韩晨磊, 李进, 李忠磊 2019 电工技术学报 34 179Google Scholar

    Du B X, Han C L, Li J, Li Z L 2019 Trans. Chin. Electrotech. Soc. 34 179Google Scholar

    [4]

    何金良, 党斌, 周垚, 胡军 2015 高电压技术 41 1417Google Scholar

    He J L, Dang B, Zhou Y, Hu J 2015 High Voltage Eng. 41 1417Google Scholar

    [5]

    Mazzanti G, Diban B 2021 IEEE Trans. Power Delivery 36 3784Google Scholar

    [6]

    Lewis T J 2014 IEEE Trans. Dielectr. Electr. Insul. 21 497Google Scholar

    [7]

    Tanaka T, Kozako M, Fuse N, Ohki Y 2005 IEEE Trans. Dielectr. Electr. Insul. 12 669Google Scholar

    [8]

    Takada T, Hayase Y, Tanaka Y 2008 IEEE Trans. Dielectr. Electr. Insul. 15 152Google Scholar

    [9]

    Zhu X, Wu J, Wang Y, Yin Y 2020 IEEE Trans. Dielectr. Electr. Insul. 27 450Google Scholar

    [10]

    Li S T, Zhao N, Nie Y J, Wang X, Chen G, Teyssedre G 2015 IEEE Trans. Dielectr. Electr. Insul. 22 92Google Scholar

    [11]

    Ye C, Zhang D S, Chen B, Tung C H, Wu L Z 2023 Chem. Phys. Rev. 4 011304Google Scholar

    [12]

    Han C L, Du B X, Li J, Li Z L, Tanaka T 2020 IEEE Trans. Dielectr. Electr. Insul. 27 1204Google Scholar

    [13]

    Yang M, Wang S, Fu J, Zhu Y, Liang J, Cheng S, Hu S, Hu J, He J, Li Q 2023 Adv. Mater. 35 2301936Google Scholar

    [14]

    Smith A M, Lane L A, Nie S M 2014 Nat. Commun. 5 4506Google Scholar

    [15]

    Tanaka T 2019 IEEE Trans. Dielectr. Electr. Insul. 26 276Google Scholar

    [16]

    Lei Z P, Fabiani D, Bray T, Li C Y, Wang X Y, Andritsch T, Credi A, La Rosa M 2021 IEEE Trans. Dielectr. Electr. Insul. 28 753Google Scholar

    [17]

    Moyassari A, Unge M, Hedenqvist M S, Gedde U W, Nilsson F 2017 J. Chem. Phys. 146 204901Google Scholar

    [18]

    Chen X, Zhao A X, Li J M, Deng J B, Zhang G J, Zhao X F 2019 J. Appl. Phys. 126 035101Google Scholar

    [19]

    Lü Z P, Ma Y T, Zhang C, Peng J Y, Wu K, Dissado L A 2021 IEEE Trans. Dielectr. Electr. Insul. 28 616Google Scholar

    [20]

    Simmons J G, Tam M C 1973 Phys. Rev. B 7 3706Google Scholar

    [21]

    Cheng S, Zhou Y, Li Y, Yuan C, Yang M, Fu J, Hu J, He J, Li Q 2021 Energy Storage Mater. 42 445Google Scholar

    [22]

    董久锋, 邓星磊, 牛玉娟, 潘子钊, 汪宏 2020 物理学报 69 217701Google Scholar

    Dong J F, Deng X L, Niu Y J, Pan Z Z, Wang H 2020 Acta Phys. Sin. 69 217701Google Scholar

    [23]

    Emtage P R, Tantraporn W 1962 Phys. Rev. Lett. 8 267Google Scholar

    [24]

    Hoang A T, Pallon L, Liu D, Serdyuk Y V, Gubanski S M, Gedde U W 2016 Polymers 8 87Google Scholar

    [25]

    Zhou L, Wang X, Zhang Y, Zhang P, Li Z 2019 Materials 12 2657Google Scholar

    [26]

    Akram S, Bhutta M S, Zhou K, Meng P F, Castellon J, Wang P, Rasool G, Aamir M, Nazir M T 2021 IEEE Trans. Dielectr. Electr. Insul. 28 1514Google Scholar

    [27]

    Fishchuk I I, Kadashchuk A K, Vakhnin A, Korosko Y, Bässler H, Souharce B, Scherf U 2006 Phys. Rev. B 73 115210Google Scholar

    [28]

    Li C, Duan L, Li H, Qiu Y 2014 J. Phys. Chem. C 118 10651Google Scholar

    [29]

    屠德民, 王霞, 吕泽鹏, 吴锴, 彭宗仁 2012 物理学报 61 01704Google Scholar

    Tu D M, Wang X, Lv Z P, Wu K, Peng Z R 2012 Acta Phys. Sin. 61 01704Google Scholar

    [30]

    张睿智, 陈文灏, 杨璐娜 2012 物理学报 61 187201Google Scholar

    Zhang R Z, Chen W H, Yang L N 2012 Acta Phys. Sin. 61 187201Google Scholar

    [31]

    Hewa-Kasakarage N N, Kirsanova M, Nemchinov A, Schmall N, El-Khoury P Z, Tarnovsky A N, Zamkov M 2009 J. Am. Chem. Soc. 131 1320Google Scholar

    [32]

    Chen X H, Chen Y T, Ren F F, Gu S L, Tan H H, Jagadish C, Ye J D 2019 Appl. Phys. Lett. 115 202101Google Scholar

  • [1] 赵大帅, 孙志, 孙兴, 孙怀得, 韩柏. 基于分形理论的微间隙空气放电. 物理学报, 2021, 70(20): 205207. doi: 10.7498/aps.70.20210362
    [2] 郭榕榕, 林金海, 刘莉莉, 李世韦, 王尘, 林海军. CdZnTe晶体中深能级缺陷对空间电荷分布特性的影响. 物理学报, 2020, 69(22): 226103. doi: 10.7498/aps.69.20200553
    [3] 袁端磊, 闵道敏, 黄印, 谢东日, 王海燕, 杨芳, 朱志豪, 费翔, 李盛涛. 掺杂含量对环氧纳米复合电介质陷阱与空间电荷的影响. 物理学报, 2017, 66(9): 097701. doi: 10.7498/aps.66.097701
    [4] 梁铭辉, 郑飞虎, 安振连, 张冶文. 基于Monte Carlo的热脉冲法数据分析. 物理学报, 2016, 65(7): 077702. doi: 10.7498/aps.65.077702
    [5] 刘康淋, 廖瑞金, 赵学童. 声脉冲法空间电荷测量系统的研究. 物理学报, 2015, 64(16): 164301. doi: 10.7498/aps.64.164301
    [6] 薛振杰, 李葵英, 孙振平. 核壳结构硒化镉/硫化镉/巯基乙酸量子点载流子输运特性. 物理学报, 2013, 62(6): 066801. doi: 10.7498/aps.62.066801
    [7] 李霞, 冯东海, 何红燕, 贾天卿, 单璐繁, 孙真荣, 徐至展. CdTe/CdS核壳结构量子点超快载流子动力学. 物理学报, 2012, 61(19): 197801. doi: 10.7498/aps.61.197801
    [8] 左应红, 王建国, 朱金辉, 牛胜利, 范如玉. 爆炸电子发射初期阴极表面电场的研究. 物理学报, 2012, 61(17): 177901. doi: 10.7498/aps.61.177901
    [9] 李维勤, 张海波, 鲁君. 非聚焦电子束照射SiO2薄膜带电效应. 物理学报, 2012, 61(2): 027302. doi: 10.7498/aps.61.027302
    [10] 廖瑞金, 伍飞飞, 刘兴华, 杨帆, 杨丽君, 周之, 翟蕾. 大气压直流正电晕放电暂态空间电荷分布仿真研究. 物理学报, 2012, 61(24): 245201. doi: 10.7498/aps.61.245201
    [11] 廖瑞金, 周天春, George Chen, 杨丽君. 聚合物材料空间电荷陷阱模型及参数. 物理学报, 2012, 61(1): 017201. doi: 10.7498/aps.61.017201
    [12] 陈暄, 安振连, 刘晨霞, 张冶文, 郑飞虎. 表层氟化温度对聚乙烯中空间电荷积累的影响. 物理学报, 2012, 61(13): 138201. doi: 10.7498/aps.61.138201
    [13] 安振连, 刘晨霞, 陈暄, 郑飞虎, 张冶文. 表层氟化聚乙烯中的空间电荷. 物理学报, 2012, 61(9): 098201. doi: 10.7498/aps.61.098201
    [14] 屠德民, 王霞, 吕泽鹏, 吴锴, 彭宗仁. 以能带理论诠释直流聚乙烯绝缘中空间电荷的形成和抑制机理. 物理学报, 2012, 61(1): 017104. doi: 10.7498/aps.61.017104
    [15] 陈曦, 王霞, 吴锴, 彭宗仁, 成永红. 温度梯度场对电声脉冲法空间电荷测量波形的影响. 物理学报, 2010, 59(10): 7327-7332. doi: 10.7498/aps.59.7327
    [16] 赵敏, 安振连, 姚俊兰, 解晨, 夏钟福. 孔洞聚丙烯驻极体膜中空间电荷与孔洞击穿电荷的俘获特性. 物理学报, 2009, 58(1): 482-487. doi: 10.7498/aps.58.482
    [17] 肖春, 张冶文, 林家齐, 郑飞虎, 安振连, 雷清泉. 聚乙烯薄膜中空间电荷短路放电复合率的发光法研究. 物理学报, 2009, 58(9): 6459-6464. doi: 10.7498/aps.58.6459
    [18] 杨 强, 安振连, 郑飞虎, 张冶文. 线性低密度聚乙烯中空间电荷陷阱的能量分布与空间分布的关系. 物理学报, 2008, 57(6): 3834-3839. doi: 10.7498/aps.57.3834
    [19] 安振连, 杨 强, 郑飞虎, 张冶文. 低密度聚乙烯热压成型过程中的空间电荷. 物理学报, 2007, 56(9): 5502-5507. doi: 10.7498/aps.56.5502
    [20] 郑飞虎, 张冶文, 吴长顺, 李吉晓, 夏钟福. 用于固体介质中空间电荷的压电压力波法与电声脉冲法. 物理学报, 2003, 52(5): 1137-1142. doi: 10.7498/aps.52.1137
计量
  • 文章访问数:  1642
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-29
  • 修回日期:  2024-04-01
  • 上网日期:  2024-04-24
  • 刊出日期:  2024-06-20

/

返回文章
返回