搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于实验参数的Dy3+,Na+: PbGa2S4中红外激光理论研究

余学舟 黄昌保 吴海信 胡倩倩 刘国晋 李亚 朱志成 祁华贝 倪友保 王振友

引用本文:
Citation:

基于实验参数的Dy3+,Na+: PbGa2S4中红外激光理论研究

余学舟, 黄昌保, 吴海信, 胡倩倩, 刘国晋, 李亚, 朱志成, 祁华贝, 倪友保, 王振友

Theoretical study of Dy3+,Na+: PbGa2S4 mid-infrared laser based on experimental parameters

Yu Xue-Zhou, Huang Chang-Bao, Wu Hai-Xin, Hu Qian-Qian, Liu Guo-Jin, Li Ya, Zhu Zhi-Cheng, Qi Hua-Bei, Ni You-Bao, Wang Zhen-You
PDF
导出引用
  • 基于加工出的Dy3+,Na+:PbGa2S4晶体元件的吸收光谱测试以及Judd-Ofelt理论计算数据,通过互易法计算出各发光能级间的荧光吸收与发射截面。通过测试与计算得到的数据,数值模拟了采用1.3 μm和1.7 μm泵浦源直接抽运Dy3+,Na+:PbGa2S4晶体产生4.3 μm中红外激光的实验方案。计算分析了激光功率、增益和吸收系数在晶体内的空间分布,分析比较了泵浦光功率、元件长度和输出镜反射率对输出功率的影响。模型中在光路中引入2.9 μm级联激光振荡,以此抽运因为4.3 μm发光堆积在能级6H13/2上的粒子数,发现其可以有效减少能级6H11/26H13/2跃迁的自终止效应,提高激光输出功率。计算结果表明:采用1.3 μm和1.7 μm泵浦源,当功率都为4 W时,最大的输出功率分别为103 mW和315 mW,斜率效率可达到2.8%和8.0%。数值模拟的结果对下一步晶体元件的改良加工以及光路搭建参数的选取提供了一定的指导意义。
    Based on the absorption spectra of Dy3+, Na+:PbGa2S4 crystal elements, as well as the theoretical calculation data obtained from Judd-Ofelt analysis, we have derived partial fluorescence absorption and emission cross sections. For energy levels that cannot be directly measured, we have employed the reciprocal method to calculate their respective absorption and emission cross-sections. Combing both experimental measurements and calculated data, a numerical simulation is conducted to investigate the experimental setup for generating a 4.3 μm mid-infrared laser through direct pumping of dysprosium and Dy3+, Na+:PbGa2S4 crystals using 1.3 μm and 1.7 μm diode lasers pumping. The simulation calculates spatial distributions of laser power, gain coefficient, and absorption coefficient within the crystal. Furthermore, we analyze the effects of pumping power, crystal length, and output mirror reflectance on laser performance. The model introduces 2.9 μm laser oscillation and observes the change of output power before and after introduction. Our findings demonstrate that the incorporation of 2.9 μm laser oscillation effectively facilitates the population transfer from the 6H13/2 level to the ground state 6H15/2, thereby mitigating the self-terminating phenomenon during the transition between the 6H11/2 and 6H13/2 levels, consequently enhancing both output power and slope efficiency of the laser system. Numerical results indicate that maximum output powers for the 1.3 μm diode laser pumping are achieved at 103 mW with a pumping threshold of 12 mW and a slope efficiency of 2.8%, while for the 1.7μm diode laser pumping, they reach up to 315 mW with a pumping threshold of 46 mW and a slope efficiency of 8%. Additionally, the optimal crystal lengths are determined as 17 mm for the 1.3 μm diode laser pumping and 32 mm for the 1.7 μm diode laser pumping. Finally, the best reflectance value for the output mirror is 0.92. These numerical results have important guiding significance for crystal processing and the selection of optical path structure parameters.
  • [1]

    Sorokina I T 2003 Solid-State Mid-Infrared Laser Sources (Palo Alto: Springer) pp89-262

    [2]

    Tan G J, Xie J J, Zhang L M, Guo J, Yang G L, Shao C L, Chen F, Yang X X, Ruan P 2013 Chin. Opt. 6 501[谭改娟,谢冀江,张来明,郭劲,杨贵龙,邵春雷,陈飞,杨欣欣,阮鹏2013中国光学6 501]

    [3]

    Zhong M, Ren G 2007 J. Ordnance Equip. Eng. 028 3[钟鸣,任钢2007四川兵工学报028 3]

    [4]

    Ebrahim-Zadeh M, Sorokina I T 2008 NATO Science for Peace and Security Series B:Physics and Biophysics (Bielefeld:Springer) pp161-170

    [5]

    Zhu C L, Kang M Q, Deng Y, Li W W, Zhou S, Li J B, Zhen J G, Zhu Q H 2022 Laser Infrared 52 7[朱灿林,康民强,邓颖,李威威,周松,李剑彬,郑建刚,朱启华2022激光与红外52 7]

    [6]

    Pan Q K 2015 Chin. Opt. 8 10[潘其坤2015中国光学8 10]

    [7]

    Wei L, Xiao L, Han L, Wu J Y, Wang K Q 2012 Chin. J. Lasers 39 0702006[魏磊,肖磊,韩隆,吴军勇,王克强2012中国激光39 0702006]

    [8]

    Lippert E 2015 Conference on Lasers and Electro-Optics (CLEO) California, San Jose, May 10-15, 2015 ppSW3O.3

    [9]

    Gu X A, Zhu W Z, Luo Z W, Angeluts A A, Evdokimov M G, Nazarov M M, Shkurinov A P, Andreev Y M, Lanskii G V, Shaiduko A V 2012 Chin. Opt. 5 7[古新安,朱韦臻,罗志伟, Angeluts A A, Evdokimov M G, Nazarov M M, Shkurinov A P, Andreev Y M, Lanskii G V, Shaiduko A V 2012中国光学5 7]

    [10]

    S., Mirov, V., Fedorov, I., Moskalev, D., Martyshkin, C., Kim 2010 Laser Photon. Rev. 4 21

    [11]

    Zang L M, Zhou S H, Zhao H, Zhang D Y, Feng Y T, Li Y, Zhu C, Zhang K, Wang X F 2012 Laser Infrared 42 5[张利明,周寿桓,赵鸿,张大勇,冯宇彤,李尧,朱辰,张昆,王雄飞2012激光与红外42 5]

    [12]

    Barnes N P, Esterowitz L, Allen R E 1984 Conference on Lasers and Electro-Optics (Optica Publishing Group), pp WA5.

    [13]

    Esterowitz L, Rosenblatt G H, Pinto J F 1994 Electron. Lett. 30 1596

    [14]

    Bowman S R, Shaw L B, Feldman B J, Ganem J 1996 IEEE J. Quantum Electron. 32 646

    [15]

    Nostrand M C, Page R H, Payne S A, Krupke W F, Schunemann P G, Isaenko L I 1999 Office of Scientific&Technical Information Technical Reports (Optica Publishing Group), ppWD4

    [16]

    Wu K, Pan S, Wu H, Yang Z 2015 J. Mol. Struct. 1082 174

    [17]

    Jelinkova H, Doroshenko M E, Osiko V V, Jelínek M,?ulc J, Němec M, Vyhlídal D, Badikov V V, Badikov D V 2016 Appl. Phys. A 122 1

    [18]

    Majewski M R, Woodward R I, Jackson S D 2020 Laser Photon. Rev. 14 1900195.1

    [19]

    Vincent, Fortin, Frédéric, Jobin, Maxence, Larose, Martin, Bernier, Réal, Vallée 2019 Opt. Lett. 44 491

    [20]

    Wang Y, Jobin F, Duval S, Fortin V, Vallée R 2019 Opt. Lett. 44 395

    [21]

    Sulc J, Jelinkova H, Doroshenko M E, Basiev T T, Osiko V V, Badikov V V, Badikov D V 2010 Opt. Lett. 35 3501

    [22]

    Xiao X, Xu Y, Guo H, Wang P, Cui X, Lu M, Wang Y, Peng B 2018 IEEE Photonics J. 10 1

    [23]

    Majewski M R, Jackson S D 2016 Opt. Lett. 41 2173

    [24]

    Chen J Q, Wang J H 2010 Laser Principle (vol.2)(Hangzhou: Zhejiang University press) pp122-127(in Chinese)[陈钰清,王静环2010激光原理(第2版)(杭州:浙江大学出版社)第122-127页]

    [25]

    Yu X, Huang C, Ni Y, Wang Z, Wu H, Hu Q, Liu G, Zhou Q, Wei L 2023 J. Lumines. 262 119951

    [26]

    Walsh B M, Barnes N P, Bartolo B D 1998 J. Appl. Phys. 83 2772

    [27]

    Payne S A, Chase L L, Smith L K, Kway W L, Krupke W F 1992 IEEE J. Quantum Electron. 28 2619

    [28]

    Carnall, W., T., Goodman, G., L., Rajnak, K., Rana, R. 1989 J. Chem. Phys. 90 3443

    [29]

    Kang M Q, Zhu C L, Deng Y,Zhu Q H 2022 Acta Opt. Sin. 42 0714002[康民强,朱灿林,邓颖,朱启华2022光学学报42 0714002]

  • [1] 姚晓岱, 吴爽, 赵锐, 吴淼鑫, 刘航, 金光勇, 于永吉. 基于台阶声光调Q外腔泵浦MgO:PPLN光参量振荡器的3.4 μm中红外脉冲串激光器. 物理学报, doi: 10.7498/aps.73.20231348
    [2] 于博文, 何孝天, 徐进良. 超临界CO2池式传热流固耦合传热特性数值模拟. 物理学报, doi: 10.7498/aps.73.20231953
    [3] 杨家齐, 赵刚, 焦康, 高健, 闫晓娟, 赵延霆, 马维光, 贾锁堂. 基于光学反馈频率锁定的窄线宽稳定中红外激光产生技术研究. 物理学报, doi: 10.7498/aps.73.20231049
    [4] 夏文新, 付士杰, 张钧翔, 张露, 盛泉, 罗学文, 史伟, 姚建铨. 基于级联跃迁的2.8 μm低掺铒氟化物光纤激光器数值分析与优化. 物理学报, doi: 10.7498/aps.72.20230903
    [5] 庄晓如, 徐心海, 杨智, 赵延兴, 余鹏. 高温吸热管内超临界CO2传热特性的数值模拟. 物理学报, doi: 10.7498/aps.70.20201005
    [6] 杨温渊, 董烨, 孙会芳, 董志伟. 磁绝缘线振荡器中模式竞争的物理分析和数值模拟. 物理学报, doi: 10.7498/aps.69.20200383
    [7] 郝倩倩, 宗梦雨, 张振, 黄浩, 张峰, 刘杰, 刘丹华, 苏良碧, 张晗. 基于铋纳米片可饱和吸收被动调Q中红外单晶光纤激光器. 物理学报, doi: 10.7498/aps.69.20200337
    [8] 王新鑫, 迟露鑫, 伍光凤, 李春天, 樊丁. Ar-O2混合气体电弧的数值模拟. 物理学报, doi: 10.7498/aps.68.20190416
    [9] 胡博, 吴越豪, 郑雨璐, 戴世勋. 2 μm波段硫系玻璃微球激光器的制备和表征. 物理学报, doi: 10.7498/aps.68.20181817
    [10] 徐肖肖, 吴杨杨, 刘朝, 王开正, 叶建. 水平螺旋管内超临界CO2冷却换热的数值模拟. 物理学报, doi: 10.7498/aps.64.054401
    [11] 危卫, 张力元, 顾兆林. 工业中粉体颗粒的荷电机理及数值模拟方法. 物理学报, doi: 10.7498/aps.64.168301
    [12] 蒋勇, 贺少勃, 袁晓东, 王海军, 廖威, 吕海兵, 刘春明, 向霞, 邱荣, 杨永佳, 郑万国, 祖小涛. CO2激光光栅式扫描修复熔石英表面缺陷的实验研究与数值模拟. 物理学报, doi: 10.7498/aps.63.068105
    [13] 李哲, 江海河, 王礼, 杨经纬, 吴先友. 2 m Cr,Tm,Ho:YAG激光热退偏效应的数值模拟及实验研究. 物理学报, doi: 10.7498/aps.61.044205
    [14] 蔡利兵, 王建国. 介质表面高功率微波击穿中释气现象的数值模拟研究. 物理学报, doi: 10.7498/aps.60.025217
    [15] 庞学霞, 邓泽超, 贾鹏英, 梁伟华. 大气等离子体中氮氧化物粒子行为的数值模拟. 物理学报, doi: 10.7498/aps.60.125201
    [16] 王可胜, 刘全坤, 张德元. D2钢系列涂层磨损性能的数值模拟. 物理学报, doi: 10.7498/aps.58.89
    [17] 欧阳建明, 邵福球, 林明东. 含氧等离子体中臭氧形成过程数值模拟. 物理学报, doi: 10.7498/aps.57.3293
    [18] 江慧丰, 张青川, 陈忠家, 伍小平. 退火铝合金中Portevin-Le Chatelier效应的数值模拟研究. 物理学报, doi: 10.7498/aps.55.2856
    [19] 周玉刚, 沈波, 刘杰, 周慧梅, 俞慧强, 张荣, 施毅, 郑有炓. 用肖特基电容电压特性数值模拟法确定调制掺杂AlxGa1-xN/GaN异质结中的极化电荷. 物理学报, doi: 10.7498/aps.50.1774
    [20] 于艳梅, 杨根仓, 赵达文, 吕衣礼, A. KARMA, C. BECKERMANN. 过冷熔体中枝晶生长的相场法数值模拟. 物理学报, doi: 10.7498/aps.50.2423
计量
  • 文章访问数:  128
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2024-07-09

/

返回文章
返回