搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地球自转速率变化的非线性特性

雷雨 赵丹宁 乔海花

引用本文:
Citation:

地球自转速率变化的非线性特性

雷雨, 赵丹宁, 乔海花
cstr: 32037.14.aps.73.20240815

Nonlinear characteristics of variations of Earth’s rotation rate

Lei Yu, Zhao Dan-Ning, Qiao Hai-Hua
cstr: 32037.14.aps.73.20240815
PDF
HTML
导出引用
  • 为研究地球自转速率变化的非线性特性, 结合自适应噪声完备经验模态分解、定量递归分析和Grassberger-Procaccia算法, 从周期、混沌和分形多角度对1962年1月1日至2023年12月31日反映地球自转速率变化的日长变化(length of day, ΔLOD)观测序列的非线性特性进行全面分析, 并着重对比分析扣除周期成分或混沌成分前后ΔLOD特性是否存在明显区别. 主要结论如下: 1) ΔLOD时间序列由趋势成分、周期成分和混沌成分构成, 具有明显的多时间尺度、混沌动力学特性和分形结构; 2)扣除混沌成分后的时间序列周期与原始ΔLOD时间序列的周期完全相同; 3)原始ΔLOD时间序列和其扣除趋势成分和周期成分后的时间序列的混沌特性无显著性差异, 但前者分形结构的复杂性相对更强.
    To study the nonlinear characteristics of changes in the Earth's rotation rate, a comprehensive analysis of the nonlinear characteristics of the length of day (ΔLOD) observations reflecting changes in the Earth’s rotation rate is conducted from multiple perspectives, including periodicity, chaos, and fractal, by using the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), recursive quantitative analysis (RAQ), and Grassberger-Procaccia (GP) algorithms. The long-term high-accuracy ΔLOD observations from January 1, 1962 to December 31, 2023, were comprehensively and reliably analyzed and then used as dataset published by the International Earth Rotation and Reference Systems Service, IERS) 14C04 series. The present workfocuses on comparing and analyzing whether there are any significant differences in the ΔLOD characteristics before and after deducting the periodic or chaotic components of ΔLOD time series. The main conclusions obtained are as follows. 1) The ΔLOD time series consists of the well-known trend components, many periodic components, and chaotic components, and therefore can be characterized by obvious multi timescales, chaotic dynamics, and fractal structure. The characteristics were not considered in previous research. 2) The period of the ΔLOD time series after deducting the chaotic components is exactly the same as the period of the original ΔLOD time series, implying that the chaotic components have no effects on reconstruction nor analysis of the periodic components. 3) There is no significant difference in chaotic characteristics between the original ΔLOD time series and its time series after deducting trend and periodic components, but the complexity of the fractal structure of the former is relatively stronger. Not only can this work provide a valuable reference for studying the mechanism of changes in the Earth’s rotation rate, but also model such rotation changes and then predict the chances on different timescales.
      通信作者: 雷雨, leiyu@xupt.edu.cn
    • 基金项目: 陕西省自然科学基础研究计划(批准号: 2023-JC-YB-057)和中国科学院青年创新促进会资助的课题.
      Corresponding author: Lei Yu, leiyu@xupt.edu.cn
    • Funds: Project supported by the Natural Science Basic Research Plan in Shananxi Province of China (Grant No. 2023-JC-YB-057) and the Youth Innovation Promotion Association, Chinese Academy of Sciences.
    [1]

    Holme R, de Viron O 2013 Nature 499 202Google Scholar

    [2]

    Buffett B, Knezek N, Holme R 2016 Geophys. J. Int. 204 1789Google Scholar

    [3]

    Meyrath T, van Dam T 2016 J. Geodyn. 99 1Google Scholar

    [4]

    Milyukov V, Mironov A, Kravchuk V, Amoruso A, Crescentini L 2013 J. Geodyn. 67 97Google Scholar

    [5]

    Duan P S, Liu G Y, Liu L T, Hu X G, Hao X G, Huang Y, Zhang Z M, Wang B B 2015 Earth, Planets Space 67 161Google Scholar

    [6]

    An Y C, Ding H, Chen Z F, Shen W B, Jiang W P 2023 Nat. Commun. 14 8130Google Scholar

    [7]

    Wolfgang R D, Daniela Thaller 2023 IERS Annual Report 2019 (Central Bureau. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie) pp1233–127

    [8]

    Bizouard C, Lambert S, Gattano C, Becker O, Richard J Y 2019 J. Geod. 93 621Google Scholar

    [9]

    Ray R D, Erofeeva S Y 2013 J. Geophys. Res. Solid Earth 119 1498Google Scholar

    [10]

    Dill R, Dobslaw H 2019 Geophys. J. Int. 218 801Google Scholar

    [11]

    Chen J L, Wilson C R, Kuang W J, Chao B F 2019 J. Geophys. Res. Solid Earth 124 13404Google Scholar

    [12]

    Yu N, Ray J, Li J C, Chen G, Chao N F, Chen W 2021 Earth Space Sci. 8 1563Google Scholar

    [13]

    Chao B F, Chung W Y, Shih Z R, Hsieh Y 2014 Terra Nova 26 260Google Scholar

    [14]

    Shen W B, Peng C C 2016 Geod. Geodyn. 7 180Google Scholar

    [15]

    Ding H 2019 Earth Planet. Sci. Lett. 507 131Google Scholar

    [16]

    Duan P S, Huang C L 2020 Nat. Commun. 11 2273Google Scholar

    [17]

    Ding H, Chao B F 2018 J. Geophys. Res. Solid Earth 123 8249Google Scholar

    [18]

    Ogunjo S, Rabiu B, Fuwape I, Atikekeresola O 2024 Adv. Space Res. 73 5406Google Scholar

    [19]

    Bolzan M J A, Paula K S S 2023 Adv. Space Res. 71 5114Google Scholar

    [20]

    David V, Galtier S, Meyrand R 2024 Phys. Rev. Lett. 132 85201Google Scholar

    [21]

    周双, 冯勇, 吴文渊 2015 物理学报 64 130504Google Scholar

    Zhou S, Fen Y, Wu W Y 2015 Acta Phys. Sin. 64 130504Google Scholar

    [22]

    Charles L, Marwan N 2015 Recurrence Quantification Analysis: Theory and Best Practices (New York: Springer) pp43–45

    [23]

    Falconer K 2013 Fractals: A Very Short Introduction (New York: Oxford University Press) pp35–36

    [24]

    Fernández-Martínez M, Sánchez-Granero M Á 2014 Topol. Appl. 163 93Google Scholar

    [25]

    Leonov G A, Florinskii A A 2019 Vestnik St Petersburg Univ. Math. 52 327Google Scholar

    [26]

    Rosenberg E 2020 Fractal Dimensions of Networks (New York: Springer) pp177–179

    [27]

    Yeh J R, Shieh J S, Huang N E 2010 Adv. Adapt. Data Anal. , Theor. Appl. 2 135Google Scholar

    [28]

    Oppenheim A V, Schafer R W 2009 Discrete-Time Signal Processing (Upper Saddle River: Prentice Hall Press) pp53–60

    [29]

    Eckmann J P, Kamphorst S O, Ruelle D 1987 Europhys. Lett. 4 973Google Scholar

    [30]

    Grassberger P, Procaccia 1983 Physica D 9 189Google Scholar

    [31]

    师思, 周永宏, 许雪晴 2017 天文学进展 39 448Google Scholar

    Shi S, Zhou Y H, Xu X Q 2017 Prog. Astron. 39 448Google Scholar

    [32]

    Wang C J, Li H Y, Zhao D 2018 Circuits Syst. Signal Process. 37 5417Google Scholar

    [33]

    许雪晴, 董大南, 周永宏 2014 天文学进展 32 338Google Scholar

    Xu X Q, Dong D N, Zhou Y H 2014 Prog. Astron. 32 338Google Scholar

    [34]

    Ding H, Li J C, Jiang W P, Shen W B 2024 Chin. Sci. Bull. 69 2038Google Scholar

  • 图 1  IERS EOP 14 C04发布的1962—2023年ΔLOD序列

    Fig. 1.  ΔLOD time series from 1962 to 2023 published by the IERS EOP 14 C04.

    图 2  CEEMDAN算法分解流程

    Fig. 2.  Decomposition flowchart of the CEEMDAN algorithm.

    图 3  不同信号的递归图 (a) 随机信号; (b) 混沌信号; (c) 周期信号

    Fig. 3.  Signals recurrence plot of different signals: (a) Stochastic signals; (b) chaotic signals; (c) periodic signals.

    图 4  GP算法估计关联维流程

    Fig. 4.  Flowchart of the GP algorithm for estimating correlation dimensions.

    图 5  1962—2023年ΔLOD的IMF分量与趋势项 (a)—(i) IMF1—IMF9; (j) 趋势项

    Fig. 5.  IMF components and trend of the ΔLOD time-series from 1962 to 2023: (a)–(i) IMF1–IMF9; (j) trend.

    图 6  IMF分量的频谱 (a)—(i) IMF1 —IMF9

    Fig. 6.  Frequency spectrum of the IMF components: (a)–(i) IMF1–IMF9.

    图 7  扣除 IMF3分量的ΔLOD的频谱

    Fig. 7.  Frequency spectrum of the ΔLOD time series with the IMF3 component removed.

    图 8  ΔLOD及其扣除趋势项和周期项的残差项的递归图 (a)—(d) ΔLOD的递归图; (e)—(h) ΔLOD残差 (IMF3分量)的递归图

    Fig. 8.  Recurrence plot of the ΔLOD and residual time series after the trend and periodic components removed: (a)–(d) Recurrence plot of the ΔLOD; (e)–(h) recurrence plot of the ΔLOD residuals (IMF3).

    图 9  ΔLOD序列的关联维与嵌入维数之间的关系 (a) $ {\text{In}}\lambda $与$ {\text{In}}C\left( \lambda \right) $的关系; (b) 关联维D与嵌入维数m的关系

    Fig. 9.  Relationship between the correlation and embedding dimensions of the ΔLOD time series: (a) Relationship between $ {\text{In}}\lambda $ and $ {\text{In}}C\left( \lambda \right) $; (b) relationship between correlation and embedding dimensions.

    图 10  ΔLOD残差项的关联维与嵌入维数之间的关系

    Fig. 10.  Relationship between the correlation and embedding dimensions of the ΔLOD residuals.

    表 1  各IMF分量的方差贡献率

    Table 1.  Variance contribution rate of each IMF component.

    模态分量方差贡献率/%模态分量方差贡献率/%
    IMF110.43IMF64.45
    IMF26.03IMF74.29
    IMF33.85IMF815.73
    IMF48.93IMF98.72
    IMF510.66趋势分量26.91
    下载: 导出CSV
  • [1]

    Holme R, de Viron O 2013 Nature 499 202Google Scholar

    [2]

    Buffett B, Knezek N, Holme R 2016 Geophys. J. Int. 204 1789Google Scholar

    [3]

    Meyrath T, van Dam T 2016 J. Geodyn. 99 1Google Scholar

    [4]

    Milyukov V, Mironov A, Kravchuk V, Amoruso A, Crescentini L 2013 J. Geodyn. 67 97Google Scholar

    [5]

    Duan P S, Liu G Y, Liu L T, Hu X G, Hao X G, Huang Y, Zhang Z M, Wang B B 2015 Earth, Planets Space 67 161Google Scholar

    [6]

    An Y C, Ding H, Chen Z F, Shen W B, Jiang W P 2023 Nat. Commun. 14 8130Google Scholar

    [7]

    Wolfgang R D, Daniela Thaller 2023 IERS Annual Report 2019 (Central Bureau. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie) pp1233–127

    [8]

    Bizouard C, Lambert S, Gattano C, Becker O, Richard J Y 2019 J. Geod. 93 621Google Scholar

    [9]

    Ray R D, Erofeeva S Y 2013 J. Geophys. Res. Solid Earth 119 1498Google Scholar

    [10]

    Dill R, Dobslaw H 2019 Geophys. J. Int. 218 801Google Scholar

    [11]

    Chen J L, Wilson C R, Kuang W J, Chao B F 2019 J. Geophys. Res. Solid Earth 124 13404Google Scholar

    [12]

    Yu N, Ray J, Li J C, Chen G, Chao N F, Chen W 2021 Earth Space Sci. 8 1563Google Scholar

    [13]

    Chao B F, Chung W Y, Shih Z R, Hsieh Y 2014 Terra Nova 26 260Google Scholar

    [14]

    Shen W B, Peng C C 2016 Geod. Geodyn. 7 180Google Scholar

    [15]

    Ding H 2019 Earth Planet. Sci. Lett. 507 131Google Scholar

    [16]

    Duan P S, Huang C L 2020 Nat. Commun. 11 2273Google Scholar

    [17]

    Ding H, Chao B F 2018 J. Geophys. Res. Solid Earth 123 8249Google Scholar

    [18]

    Ogunjo S, Rabiu B, Fuwape I, Atikekeresola O 2024 Adv. Space Res. 73 5406Google Scholar

    [19]

    Bolzan M J A, Paula K S S 2023 Adv. Space Res. 71 5114Google Scholar

    [20]

    David V, Galtier S, Meyrand R 2024 Phys. Rev. Lett. 132 85201Google Scholar

    [21]

    周双, 冯勇, 吴文渊 2015 物理学报 64 130504Google Scholar

    Zhou S, Fen Y, Wu W Y 2015 Acta Phys. Sin. 64 130504Google Scholar

    [22]

    Charles L, Marwan N 2015 Recurrence Quantification Analysis: Theory and Best Practices (New York: Springer) pp43–45

    [23]

    Falconer K 2013 Fractals: A Very Short Introduction (New York: Oxford University Press) pp35–36

    [24]

    Fernández-Martínez M, Sánchez-Granero M Á 2014 Topol. Appl. 163 93Google Scholar

    [25]

    Leonov G A, Florinskii A A 2019 Vestnik St Petersburg Univ. Math. 52 327Google Scholar

    [26]

    Rosenberg E 2020 Fractal Dimensions of Networks (New York: Springer) pp177–179

    [27]

    Yeh J R, Shieh J S, Huang N E 2010 Adv. Adapt. Data Anal. , Theor. Appl. 2 135Google Scholar

    [28]

    Oppenheim A V, Schafer R W 2009 Discrete-Time Signal Processing (Upper Saddle River: Prentice Hall Press) pp53–60

    [29]

    Eckmann J P, Kamphorst S O, Ruelle D 1987 Europhys. Lett. 4 973Google Scholar

    [30]

    Grassberger P, Procaccia 1983 Physica D 9 189Google Scholar

    [31]

    师思, 周永宏, 许雪晴 2017 天文学进展 39 448Google Scholar

    Shi S, Zhou Y H, Xu X Q 2017 Prog. Astron. 39 448Google Scholar

    [32]

    Wang C J, Li H Y, Zhao D 2018 Circuits Syst. Signal Process. 37 5417Google Scholar

    [33]

    许雪晴, 董大南, 周永宏 2014 天文学进展 32 338Google Scholar

    Xu X Q, Dong D N, Zhou Y H 2014 Prog. Astron. 32 338Google Scholar

    [34]

    Ding H, Li J C, Jiang W P, Shen W B 2024 Chin. Sci. Bull. 69 2038Google Scholar

  • [1] 赵大帅, 孙志, 孙兴, 孙怀得, 韩柏. 基于分形理论的微间隙空气放电. 物理学报, 2021, 70(20): 205207. doi: 10.7498/aps.70.20210362
    [2] 颜森林. 激光局域网络的混沌控制及并行队列同步. 物理学报, 2021, 70(8): 080501. doi: 10.7498/aps.70.20201251
    [3] 许子非, 缪维跑, 李春, 金江涛, 李蜀军. 流场非线性特征提取与混沌分析. 物理学报, 2020, 69(24): 249501. doi: 10.7498/aps.69.20200625
    [4] 刘德浩, 任芮彬, 杨博, 罗懋康. 涨落作用下周期驱动的分数阶过阻尼棘轮模型的混沌输运现象. 物理学报, 2015, 64(22): 220501. doi: 10.7498/aps.64.220501
    [5] 唐洁. 基于集合经验模态分解的类星体光变周期及其混沌特性分析. 物理学报, 2014, 63(4): 049701. doi: 10.7498/aps.63.049701
    [6] 行鸿彦, 龚平, 徐伟. 海杂波背景下小目标检测的分形方法. 物理学报, 2012, 61(16): 160504. doi: 10.7498/aps.61.160504
    [7] 古华光, 惠磊, 贾冰. 一类位于加周期分岔中的貌似混沌的随机神经放电节律的识别. 物理学报, 2012, 61(8): 080504. doi: 10.7498/aps.61.080504
    [8] 郑艳斌, 宋煜, 杜宝祥, 潘晶, 丁群. 一种混沌密码序列周期特性检测新方法. 物理学报, 2012, 61(23): 230501. doi: 10.7498/aps.61.230501
    [9] 杨娟, 卞保民, 彭刚, 李振华. 随机信号双参数脉冲模型的分形特征. 物理学报, 2011, 60(1): 010508. doi: 10.7498/aps.60.010508
    [10] 张丽, 刘树堂. 薄板热扩散分形生长的环境干扰控制. 物理学报, 2010, 59(11): 7708-7712. doi: 10.7498/aps.59.7708
    [11] 牛超, 李夕海, 刘代志. 地球变化磁场Z分量的混沌动力学特性分析. 物理学报, 2010, 59(5): 3077-3087. doi: 10.7498/aps.59.3077
    [12] 姜泽辉, 郭波, 张峰, 王福力. 摩擦力对非弹性蹦球倍周期运动的影响. 物理学报, 2010, 59(12): 8444-8450. doi: 10.7498/aps.59.8444
    [13] 柳宁, 李俊峰, 王天舒. 双足模型步行中的倍周期步态和混沌步态现象. 物理学报, 2009, 58(6): 3772-3779. doi: 10.7498/aps.58.3772
    [14] 姜泽辉, 赵海发, 郑瑞华. 完全非弹性蹦球倍周期运动的分形特征. 物理学报, 2009, 58(11): 7579-7583. doi: 10.7498/aps.58.7579
    [15] 孟田华, 赵国忠, 张存林. 亚波长分形结构太赫兹透射增强的机理研究. 物理学报, 2008, 57(6): 3846-3852. doi: 10.7498/aps.57.3846
    [16] 晋建秀, 丘水生, 谢丽英, 冯明库. 一种基于周期轨道统计的混沌信号不可预测性强弱的检测方法. 物理学报, 2008, 57(5): 2743-2749. doi: 10.7498/aps.57.2743
    [17] 李 彤, 商朋见. 多重分形在掌纹识别中的研究. 物理学报, 2007, 56(8): 4393-4400. doi: 10.7498/aps.56.4393
    [18] 疏学明, 方 俊, 申世飞, 刘勇进, 袁宏永, 范维澄. 火灾烟雾颗粒凝并分形特性研究. 物理学报, 2006, 55(9): 4466-4471. doi: 10.7498/aps.55.4466
    [19] 颜森林. 注入半导体激光器混沌相位周期控制方法研究. 物理学报, 2006, 55(10): 5109-5114. doi: 10.7498/aps.55.5109
    [20] 王培杰, 吴国祯. 混沌体系中寻找周期轨迹的方法. 物理学报, 2005, 54(7): 3034-3043. doi: 10.7498/aps.54.3034
计量
  • 文章访问数:  903
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-08
  • 修回日期:  2024-08-07
  • 上网日期:  2024-09-04
  • 刊出日期:  2024-10-05

/

返回文章
返回