搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于简单结构光纤的紫外波段三次谐波转换

黄宇强 陈漫晶 江秀娟

引用本文:
Citation:

基于简单结构光纤的紫外波段三次谐波转换

黄宇强, 陈漫晶, 江秀娟

Third-harmonic generation in ultraviolet band with simply-structured optical fibers

HUANG Yuqiang, CHEN Manjing, JIANG Xiujuan
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 全光纤频率转换技术具有重要的科学和现实意义, 设计兼备机械性能和转换效率的特种光纤, 并降低其制备难度, 是该技术实用化面临的关键挑战. 本文设计了具有简单结构的高数值孔径常规单包层光纤(conventional single-cladding fiber, CSCF)、微纳光纤(microfiber, MF)及W型双包层光纤(W-type double-cladding fiber, WDCF), 并通过理论分析和数值模拟比较了这3种光纤从红外到紫外波段的三次谐波转换特性. 采用1064 nm泵浦波长作设计, 谐波输出波长为355 nm. 研究结果表明, CSCF和WDCF均具有固态包层, 且纤芯直径可大于2 μm, 机械性能良好; MF光纤可以实现的转换效率最高, 但光纤结构脆弱, 机械性能较差, 且对制备精度要求严苛. WDCF融合了CSCF和MF的优势, 单段光纤的转换效率接近2%, 四段级联后约为16%, 纤芯直径误差宽容度为±3 nm, 分别是CSCF的3倍和MF的10倍, 制备难度较低, 为紫外波段的全光纤三次谐波转换提供了一种具有实际可行性的选择方案.
    Ultraviolet fiber lasers are highly desired in different fields such as lithography, laser processing, optical communications, optical storage, and biomedicine. On the other hand, all-fiber frequency conversion technology is of great significance in scientific research and practical applications, as it provides an alternative to the current solutions based on nonlinear crystals. Developing special optical fibers with both suitable mechanical performance and conversion efficiency and reducing the difficulty in their preparing are the key challenges in bringing this novel technology into practical application. In this work, three step-index optical fibers with simple structure are designed, they being a conventional single-cladding fiber (CSCF) with high numerical aperture, a microfiber (MF), and a W-type double-cladding fiber (WDCF), and the third-harmonic generation in ultraviolet band is studied by using them, respectively. The fundamental (pump) wavelength used in this work is 1064 nm and the third-harmonic wavelength is 355 nm.In order to achieve good transmission in the ultraviolet band, the cores of all three optical fibers are designed to be made of pure silica glass, and the core diameters are determined according to the phase matching condition for the fundamental wave and the third harmonic, by solving the eigenvalue equations. The cladding of CSCF is fluorine-doped silica glass, and the cladding of MF is air; for WDCF, the inner cladding and outer cladding are fluorine-doped silica glass and fluoroplastics, respectively. Both the CSCF and the WDCF have solid cladding, and their core diameters can be greater than 2 μm, so they have adequate mechanical properties. In comparison, due to the air cladding and thin core, the core diameter has to be less than 1 μm for phase matching, the MF is fragile in structure and thus its mechanical performance is rather poor.The conversion efficiencies of these three fibers are investigated in detail, by solving numerically the coupled mode equations for the pump and the third harmonic with the Runge-Kutta method. The effect of random fiber roughness (i.e. core diameter fluctuation) and enhancement in conversion efficiency by cascading the fibers are also analyzed. The results show that the conversion efficiency in MF is the highest, with an efficiency of 2% for a 5-mm-long single MF segment and over 20% for cascaded MFs ; however, MF requires strict fabrication accuracy, and the tolerance of core diameter is only ± 0.3 nm. The CSCF has the lowest conversion efficiency, which is 0.1% for a 50-mm-long single segment and at the level of about 1% after cascading, and the tolerance of core diameter is ± 1 nm. The conversion efficiency of WDCF is between those of CSCF and MF, nearly 2% with a 50-mm-long segment and about 16% when four such segments are cascaded; WDCF bears core diameter tolerance of ± 3 nm, which is three times that of CSCF and 10 times that of MF. Therefore, the W-type double-cladding fiber WDCF actually integrates the advantages of conventional single-cladding fiber CSCF and microfiber MF, showing both satisfactory mechanical performance and conversion efficiency, as well as reduced fabrication difficulty, which provides a promising solution for all-fiber third-harmonic generation in the ultraviolet band.
  • 图 1  光纤级联系统示意图, 其中TF表示转换光纤, GF表示传导光纤, P0为输入泵浦功率, P1为残余泵浦功率, P3为输出的三次谐波功率

    Fig. 1.  Schematic of the cascaded fiber system. TF is the third-harmonic generation fiber, GF is the guiding fiber, P0 is input pump power, P1 is residual pump power, and P3 is output harmonic power.

    图 2  光纤折射率示意图 (a)单包层光纤的横截面; (b)单包层光纤折射率随半径的分布; (c) W型双包层光纤的横截面; (d) W型双包层光纤折射率随半径的分布

    Fig. 2.  Refractive index diagram of optical fiber: (a) Cross-section of single-cladding fiber; (b) refractive index distribution in radius of single-cladding fiber; (c) cross-section of W-type double-cladding fiber; (d) refractive index distribution in radius of W-type double-cladding fiber.

    图 3  基频波和三次谐波不同模式的有效折射率$ {n}^{{\mathrm{e}}{\mathrm{f}}{\mathrm{f}}} $与纤芯直径 $ {d}_{1} $的关系 (a)常规单包层光纤CSCF; (b)微纳光纤MF; (c)双包层光纤WDCF, 基频波长$ {\lambda }_{1}=1064\;{\mathrm{n}}{\mathrm{m}} $

    Fig. 3.  Dependence of effective refractive index $ {n}^{{\mathrm{e}}{\mathrm{f}}{\mathrm{f}}} $ of the fundamental wave and the third harmonic on core diameter $ {d}_{1} $: (a) CSCF; (b) MF; (c) WDCF. The fundamental wavelength is $ {\lambda }_{1}=1064\;{\mathrm{n}}{\mathrm{m}} $.

    图 4  三次谐波转换效率与纤芯直径d1、入射泵浦功率P0的关系 (a)常规单包层光纤CSCF, 长度为50 mm; (b)微纳光纤MF, 长度为5 mm; (c)双包层光纤WDCF, 长度为50 mm

    Fig. 4.  Dependence of third harmonic conversion efficiency on core diameter d1 and input pump power P0: (a) CSCF in 50 mm length; (b) MF in 5 mm length; (c) WDCF in 50 mm length.

    图 5  光纤具有不同随机粗糙度σ时的三次谐波转换效率$ \eta $ (a)常规单包层光纤CSCF, 长度为50 mm; (b)微纳光纤MF, 长度为5 mm; (c)双包层光纤WDCF, 长度为50 mm

    Fig. 5.  Third harmonic conversion efficiency for different fiber random roughness: (a) CSCF in 50 mm length; (b) MF in 5 mm length; (c) WDCF in 50 mm length.

    图 6  纤芯直径不同时总相位失配量$ {\delta \beta }_{t} $随泵浦光功率P0的变化 (a)常规单包层光纤CSCF, 长度为50 mm, 纤芯直径分别为$ {d}_{1}=2217,\; 2216, \;2215\;{\mathrm{ }}{\mathrm{ }}{\mathrm{ }}{\mathrm{ }}{\mathrm{n}}{\mathrm{m}} $; (b)微纳光纤MF, 长度为5 mm, 纤芯直径分别为$ {d}_{1}=506.3, \;506, \;505.7\;{\mathrm{ }}{\mathrm{ }}{\mathrm{ }}{\mathrm{ }}{\mathrm{n}}{\mathrm{m}} $; (c)双包层光纤WDCF, 长度为50 mm, 纤芯直径分别为$ {d}_{1}= $$ 2217, \;2214, \;2211\;{\mathrm{ }}{\mathrm{ }}{\mathrm{ }}{\mathrm{ }}{\mathrm{n}}{\mathrm{m}} $

    Fig. 6.  Total mismatch in propagation constant $ {\delta \beta }_{t} $ versus input pump power P0 for different core diameters: (a) CSCF in 50 mm length, core diameters are $ {d}_{1}=2217,\; 2216, $$ 2215\;{\mathrm{ }}{\mathrm{ }}{\mathrm{ }}{\mathrm{ }}{\mathrm{n}}{\mathrm{m}} $; (b) MF in 5 mm length, core diameters are $ {d}_{1}=506.3, \;506, \;505.7\;{\mathrm{ }}{\mathrm{ }}{\mathrm{ }}{\mathrm{ }}{\mathrm{n}}{\mathrm{m}} $; (c) WDCF in 50 mm length, core diameters are $ {d}_{1}=2217,\; 2214, \;2211{\mathrm{ }}{\mathrm{ }}{\mathrm{ }}\;{\mathrm{ }}{\mathrm{n}}{\mathrm{m}} $.

    图 7  级联单元数N不同时三次谐波转换效率$ \eta $随泵浦光功率P0的变化 (a)转换光纤为常规单包层光纤CSCF, 长度LTF = 50 mm; (b)转换光纤为微纳光纤MF, 长度LTF = 5 mm; (c)转换光纤为双包层光纤WDCF, 长度LTF = 50 mm. 泵浦光波长$ {\lambda }_{1}=1064\;{\mathrm{n}}{\mathrm{m}} $, 转换光纤粗糙度σ = 0.3 nm; 传导光纤为标准阶跃型光纤(纤芯直径9 μm, 长度LGF = 20 cm)

    Fig. 7.  Third harmonic conversion efficiency versus input pump power for cascading system of different unit number N: (a) CSCF as the third-harmonic generation fiber (TF), with length LTF = 50 mm; (b) MF as the TF, with length LTF = 5 mm; (c) WDCF as the TF, with length LTF = 50 mm. The pump wavelength is $ {\lambda }_{1}=1064\;{\mathrm{n}}{\mathrm{m}} $, and the TFs are of roughness (σ = 0.3 nm). The guiding fibers (GFs) are standard step-index fibers (9 μm core diameter, length LGF = 20 cm).

    表 1  光纤的基本参数(基频波长$ {\lambda }_{1}=1064\;{\mathrm{n}}{\mathrm{m}} $, 三次谐波波长$ {\lambda }_{3}=355\;{\mathrm{n}}{\mathrm{m}} $)

    Table 1.  Basic parameters of optical fibers (fundamental wavelength $ {\lambda }_{1}=1064\;{\mathrm{n}}{\mathrm{m}} $, third-harmonic wavelength $ {\lambda }_{3}=355\;{\mathrm{n}}{\mathrm{m}} $).

    基本参数 光纤类型
    CSCF MF WDCF
    纤芯材料 纯silica 纯silica 纯silica
    内包层材料 掺氟silica 空气 掺氟silica
    外包层材料 氟塑料
    基频折射率
    [n1, n2, n3]
    [1.45, 1.33, —] [1.45, 1, —] [1.45, 1.33, 1.37]
    三次谐波折射率
    [n1, n2, n3]
    [1.48, 1.36, —] [1.48, 1, —] [1.48, 1.36, 1.40]
    基频模式 HE11(λ1) HE11(λ1) HE11(λ1)
    三次谐波模式 HE13(λ3) HE12(λ3) HE13(λ3)
    纤芯直径d1/nm 2217.3 506.5 2217.4
    包层直径
    [d2, d3]/μm
    [125, —] [$ {\mathrm{\infty }} $, —] [6, 125]
    光纤长度L/mm 50 5 50
    非线性重叠
    积分J3/μm–2
    0.0092 0.7266 0.0344
    基频功率
    损耗系数
    $ {\alpha }_{1} $/(dB $ \cdot $m–1)
    0.08 2 0.08
    谐波功率
    损耗系数
    $ {\alpha }_{3} $/(dB $ \cdot $m–1)
    0.8 20 0.8
    下载: 导出CSV

    表 2  三种光纤的特性对比(泵浦光波长 $ {\lambda }_{1}= $$ 1064\;{\mathrm{n}}{\mathrm{m}} $, 光纤粗糙度σ = 0.3 nm)

    Table 2.  Comparison of characteristics of three fibers (pump wavelength is $ {\lambda }_{1}=1064\;{\mathrm{n}}{\mathrm{m}} $, and the TFs are of roughness σ = 0.3 nm).

    特性光纤类型
    CSCFMFWDCF
    机械强度较强较强
    优化的纤芯直径/nm22165062214
    纤芯直径误差宽容度/nm±1±0.3±3
    $ {\eta }^{{\mathrm{m}}{\mathrm{a}}{\mathrm{x}}} $(N = 1)/%0.12.81.8
    $ {\eta }^{{\mathrm{m}}{\mathrm{a}}{\mathrm{x}}} $(N = 4)/%1.422.916.0
    下载: 导出CSV
  • [1]

    周朴, 冷进勇, 肖虎, 马鹏飞, 许将明, 刘伟, 姚天甫, 张汉伟, 黄良金, 潘志勇 2021 中国激光 48 2000001Google Scholar

    Zhou P, Leng J Y, Xiao H, Ma P F, Xu J M, Liu W, Yao T F, Zhang H W, Huang L J, Pan Z Y 2021 Chin. J. Lasers 48 2000001Google Scholar

    [2]

    Lü X L, Peng Y J, Wang W Y, Zhao Y N, Zhu X Y, Leng Y X 2021 High Power Laser Sci. 9 03000e38

    [3]

    Fu Q, Hanrahan N, Xu L, Lane S, Lin D, Jung Y, Mahajan S, Richardson D J 2021 Opt. Express 29 42485Google Scholar

    [4]

    Bencheikh K, Richard S, Mélin G, Krabshuis G, Gooijer F, Levenson J 2012 Opt. Lett. 37 289Google Scholar

    [5]

    Cheng T, Gao W, Liao M, Duan Z, Deng D, Matsumoto M, Misumi T, Suzuki T, Ohishi Y 2014 Opt. Lett. 39 1005Google Scholar

    [6]

    Gabriagues J 1983 Opt. Lett. 8 183Google Scholar

    [7]

    Grubsky V, Savchenko A 2005 Opt. Express 13 6798Google Scholar

    [8]

    Efimov A, Taylor A, Omenetto F, Knight J, Wadsworth W, Russell P 2003 Opt. Express 11 2567Google Scholar

    [9]

    滕欢, 柴路, 王清月, 胡明列 2017 物理学报 66 044205Google Scholar

    Teng H, Chai L, Wang Q Y, Hu M L 2017 Acta Phys. Sin. 66 044205Google Scholar

    [10]

    Boivin M, El-Amraoui M, Ledemi Y, Morency S, Vallée R, Messaddeq Y 2014 Opt. Mater. Express 4 1740Google Scholar

    [11]

    Snyder A W, Love J D 1983 Optical Waveguide Theory (New York: Chapman and Hall) pp248-254

    [12]

    Brunet C, Bélanger P A, Rusch L A 2016 J. Lightwave Technol. 34 3094Google Scholar

    [13]

    Tsao C 1992 Optical Fibre Waveguide Analysis (New York: Oxford University Press) pp298-369

    [14]

    Kong M, Shi B 2006 Fiber Integrated Opt. 25 305Google Scholar

    [15]

    Jiang X J, Zhang D D, Lee T, Brambilla G 2018 Opt. Lett. 43 2728Google Scholar

    [16]

    Jiang X J, Chen Z N, Lee T, Brambilla G 2020 Opt. Lett. 45 3272Google Scholar

    [17]

    Malitson I H 1965 J. Opt. Soc. Am. 55 1205Google Scholar

    [18]

    Tan C Z 1998 J. Non-Cryst. Solids 223 158Google Scholar

    [19]

    Lee T, Jung Y, Codemard C, Ding M, Broderick N, Brambilla G 2012 Opt. Express 20 8503Google Scholar

    [20]

    Refractive index database, https://refractiveindex.info/

    [21]

    Agrawal G P 2019 Nonlinear Fiber Optics (London: Academic) pp476-477

    [22]

    Jiang X J, Lee T, Chen M M, Sun Q, He J, Brambilla G 2019 Opt. Lett. 44 4191Google Scholar

  • [1] 赵丽娟, 姜焕秋, 徐志钮. 螺旋扭曲双包层-三芯光子晶体光纤用于轨道角动量的生成. 物理学报, doi: 10.7498/aps.72.20222405
    [2] 王浩, 曹珊珊, 苏俊豪, 徐海涛, 王震, 郑加金, 韦玮. 基于双包层光纤布拉格光栅传感器的锂电池组温度场监控. 物理学报, doi: 10.7498/aps.71.20212302
    [3] 滕欢, 柴路, 王清月, 胡明列. 高非线性光子晶体光纤中优化产生宽带紫外三次谐波. 物理学报, doi: 10.7498/aps.66.044205
    [4] 付兴虎, 谢海洋, 杨传庆, 张顺杨, 付广伟, 毕卫红. 基于包层模谐振的三包层石英特种光纤温度传感特性研究. 物理学报, doi: 10.7498/aps.65.024211
    [5] 赵楠, 陈瑰, 王一礴, 彭景刚, 李进延. 双包层大模场面积保偏掺镱光子晶体光纤研究. 物理学报, doi: 10.7498/aps.63.024202
    [6] 邢颍滨, 叶宝圆, 蒋作文, 戴能利, 李进延. 高效率掺Tm3+双包层光纤及光纤激光器的研制. 物理学报, doi: 10.7498/aps.63.014209
    [7] 王莎莎, 潘玉寨, 高仁喜, 祝秀芬, 苏晓慧, 曲士良. 碳纳米管锁模双包层光纤激光器的实验研究. 物理学报, doi: 10.7498/aps.62.024209
    [8] 姜曼, 肖虎, 周朴, 王小林, 刘泽金. 高功率、低量子亏损同带抽运掺镱光纤放大器. 物理学报, doi: 10.7498/aps.62.044210
    [9] 朱亚东, 肖虎, 王小林, 马阎星, 周朴. 利用全光纤结构Michelson腔实现两路高功率双包层光纤激光器相干合成. 物理学报, doi: 10.7498/aps.61.054210
    [10] 延凤平, 刘鹏, 陶沛琳, 李琦, 彭万敬, 冯亭, 谭思宇. 双包层稀土掺杂光纤抽运吸收特性的分析. 物理学报, doi: 10.7498/aps.61.164203
    [11] 刘华刚, 黄见洪, 翁文, 李锦辉, 郑晖, 戴殊韬, 赵显, 王继扬, 林文雄. 高功率全正色散锁模掺Yb3+双包层光纤飞秒激光器. 物理学报, doi: 10.7498/aps.61.154210
    [12] 王岩山, 蒋作文, 栾怀训, 张泽学, 彭景刚, 杨旅云, 李进延, 戴能利. 双包层掺Bi光纤的制备及其光谱特性研究. 物理学报, doi: 10.7498/aps.61.084215
    [13] 季来林, 朱宝强, 詹廷宇, 戴亚平, 朱检, 马伟新, 林尊琪. 大口径高通量三倍频研究. 物理学报, doi: 10.7498/aps.60.094210
    [14] 崔艳玲, 侯蓝田. 一种新型混合双包层光子晶体光纤的色散特性研究. 物理学报, doi: 10.7498/aps.59.2571
    [15] 韩伟涛, 侯蓝田, 耿鹏程. 双包层多芯光子晶体光纤自相干合成的数值分析与实验. 物理学报, doi: 10.7498/aps.59.7091
    [16] 刘洋, 程勇, 许立新, 郑睿, 王小兵, 王会升, 卢常勇, 孙斌. 两路双包层光纤激光器互注入锁相实验研究. 物理学报, doi: 10.7498/aps.58.3929
    [17] 赵宏明, 楼祺洪, 周 军, 董景星, 魏运荣, 王之江. 不同腔结构下的声光调Q双包层光纤激光器特性研究. 物理学报, doi: 10.7498/aps.57.3525
    [18] 宋有建, 胡明列, 刘庆文, 李进延, 陈 伟, 柴 路, 王清月. 掺Yb3+双包层大模场面积光纤锁模激光器. 物理学报, doi: 10.7498/aps.57.5045
    [19] 杨义胜, 郑万国, 韩 伟, 车雅良, 谭吉春, 向 勇, 贾怀庭. 宽带三倍频混频过程的群速匹配关系. 物理学报, doi: 10.7498/aps.56.6468
    [20] 付圣贵, 范万德, 张 强, 王 志, 李丽君, 张春书, 袁树忠, 董孝义. 光纤光栅选频掺Yb3+双包层光纤激光器. 物理学报, doi: 10.7498/aps.53.4262
计量
  • 文章访问数:  179
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-26
  • 修回日期:  2025-04-07
  • 上网日期:  2025-04-24

/

返回文章
返回