-
多光子显微镜(MPM)已成为生物医学领域的重要研究工具。目前,MPM的驱动激光基于钛蓝宝石激光器,可提供720-950 nm的波长可调谐飞秒脉冲。为覆盖1000-1350 nm的第二生物透射窗口,通常需要引入复杂的光学参量振荡器。而为增加成像深度,位于1600-1750 nm的第三生物透射窗口的光源同样也得到了广泛的关注。然而,迄今为止还没有能够同时覆盖三个透射窗口的超快激光源,这阻碍了MPM在生医领域的广泛应用。在本论文中,我们发展了一种基于双波长光纤激光器的超快光源,输出波长在800 nm到1650 nm之间可调谐的四色飞秒脉冲,覆盖了适合驱动MPM的全部波段。利用该超倍频程的超快光源驱动MPM,我们成功实现了对多种生物医学样品的无标记多模态成像。Multiphoton microscopy (MPM) has become an essential research tool in biomedicine. Current MPM systems predominantly rely on Ti:sapphire lasers providing tunable femtosecond pulses at 720-950 nm. To access the second biological transparency window (1000-1350 nm), complex optical parametric oscillators are typically required. Furthermore, sources operating in the third biological transparency window (1600-1750 nm) are attracting significant attention for enhanced imaging depth. However, no ultrafast laser source simultaneously covering all three transparency windows exists, hindering the widespread application of MPM in life sciences. Here, we demonstrate a fiber-laser-based ultrafast source generating four-color tunable pulses across 800-1650 nm, covering the full spectral range for multiphoton excitation. This source leverages our proposed spectral selection technique via self-phase modulation (SESS). SESS ensures SPM-dominated spectral broadening, producing isolated spectral lobes. Filtering the outermost lobes generates near-transform-limited pulses with broad wavelength tunability. Using this supercontinuum excitation source, we successfully achieved label-free imaging of diverse biomedical specimens, validating the performance of MPM empowered by this novel driving source.
-
[1] Adur J, Carvalho H F, Cesar C L, Casco V H 2014 Cancer Inform. 13 67
[2] Perry S W, Burke R M, Brown E B 2012 Ann. Biomed. Eng. 40 277
[3] You S, Tu H, Chaney E J, Sun Y, Zhao Y, Bower A J, Liu Y, Marjanovic M, Sinha S, Pu Y, Boppart S A 2018 Nat. Commun. 9 2125
[4] Huang S H, Heikal A A, Webb W W 2002 Biophys. J. 82 2811
[5] Zipfel W R, Williams R M, Christie R, Nikitin A Y, Hyman B T, Webb W W 2003 Proc. Natl. Acad. Sci. U.S.A. 100 7075
[6] Chu S, Chen I, Liu T, Cheng P, Sun C, Lin B 2001 Opt. Lett. 26 1909
[7] H. Zhang, Y. Chen, D. Cao, Y. Wang, Y. Zhang, J. Zhao 2021 Biomed. Opt. Express 12 1308
[8] Sordillo L A, Pu Y, Pratavieira S, Budansky Y, Alfano R R 2014 J. Biomed. Opt. 19 056004
[9] Shi L, Sordillo L A, Rodríguez Contreras A, Alfano R 2016 J. Biophotonics 9 38
[10] Wang K, Horton N G, Charan K, Mirocha J D, Gaeta A L 2013 IEEE J. Sel. Top. Quantum Electron. 20 50
[11] Ouzounov D G, Wang T, Wang M, Feng D D, Horton N G, Cruz Hernández J C, Cheng Y T, Reimer J, Tolias A S, Nishimura N, Xu C 2017 Nat. Methods 14 388
[12] Horton N G, Wang K, Kobat D, Clark C G, Wise F W, Schaffer C B, Xu C 2013 Nat. Photonics 7 205
[13] Buttolph M L, Mejooli M A, Sidorenko P, Eom C Y, Schaffer C B, Wise F W 2022 Opt. Lett. 47 545
[14] Travers J 2010 J. Opt. 12 113001
[15] Liu Y, Tu H, Benalcazar W A, Boppart S A 2011 IEEE J. Sel. Top. Quantum Electron. 18 1209
[16] Tu H, Liu Y, Turchinovich D, Marjanovic M, Lyngsø J K, Lægsgaard J, Chaney E J, Zhao Y, You S, Wilson W L, Xu B, Dantus M, Boppart S A 2016 Nat. Photonics 10 534
[17] Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135
[18] Birks T, Wadsworth W, Russell P S J 2000 Opt. Lett. 25 1415
[19] Liu W, Li C, Zhang Z, Kärtner F X, Chang G Q 2016 Opt. Express 24 15328
[20] Liu W, Chia S H, Chung H Y, Greinert R, Kärtner F X, Chang G Q 2017 Opt. Express 25 6822
[21] Chung H Y, Liu W, Cao Q, Greinert R, Kärtner F X, Chang G Q 2019 IEEE J. Sel. Top. Quantum Electron. 25 6800708
[22] Chung H Y, Greinert R, Kärtner F X, Chang G Q 2019 Biomed. Opt. Express 10 514
[23] Boppart S A, You S, Li L H, Chen J, Tu H 2019 APL Photonics 4 100901
计量
- 文章访问数: 69
- PDF下载量: 1
- 被引次数: 0