-
理解原子尺度下氦浓度对低活化钢缺陷演化和力学性能的内在关联是设计兼具优异抗肿胀和抗脆化性能聚变材料的关键。本文通过分子动力学模拟研究氦浓度对单晶铁的影响。结果表明NHe<3.0%时,弗伦克尔缺陷对(Frenkel Pairs, FPs)数量都表现为线性增长至峰值后稳定;而当NHe≥3.0%,间隙大团簇的形成会吸收间隙原子长大并降低湮灭速率,导致FPs数量二次增长,被空位环绕后,不再阻碍复位,数量二次稳定。当NHe增加到3.0%时,单晶铁的弹性模量,屈服强度和韧性分别下降了21%、88%和57%,此后氦浓度增加,力学性能不再降低。这是由于NHe<3.0%时,随着氦浓度上升,氦致缺陷增多,导致韧性降低,促进位错形核,使弹性模量和屈服强度下降;而当NHe≥3.0%时,初始缺陷存在位错,且团簇数量变化甚微,韧性不再降低,不影响位错形核,弹性模量和屈服强度随之稳定。NHe=3.0%时出现的大团簇阻碍滑移系滑移,改变滑移平面方向,削弱主滑移系作用,导致小滑移带增多,塑性变形机制由交滑移转变为滑移带相遇后分解为离散位错和点缺陷。研究揭示了氦浓度对单晶铁缺陷演化及力学性能的影响规律和关键机制,为聚变铁基材料设计提供理论依据。Understanding the intrinsic correlation between helium concentration and the evolution of defects as well as mechanical properties in low-activation steel at the atomic scale is crucial for designing fusion materials with excellent resistance to swelling and embrittlement. This study investigates the effect of helium concentration on single-crystal iron through molecular dynamics simulations, aiming to clarify the mechanisms by which helium concentration influences helium defect evolution, mechanical properties, and plastic deformation behavior of low-activation steel at the atomic scale. Models of body-centered cubic (BCC) iron with different helium concentrations (0.5%–4.5%) are established. Wigner-Seitz cell analysis and cluster clustering methods are employed to track the evolution of Frenkel Pairs (FPs) and cluster defects, revealing the mechanism of helium concentration-induced FPs and cluster formation at 500°C. Furthermore, combined with tensile mechanical simulations, the effects of helium behavior on the mechanical properties of single-crystal iron, such as elastic modulus, yield strength, and toughness, are analyzed, and the correlation mechanisms among helium concentration-induced defect evolution, mechanical properties, and plastic deformation behavior are revealed.The results show that when NHe<3.0%, the number of FPs increases linearly to a peak and then stabilizes. This is because helium behavior causes a rapid increase in the number of FPs and a large number of interstitial atoms are generated, some of which recombine. The annihilation rate of FPs increases with their number and eventually equals the generation rate, resulting in a stable number of FPs. When NHe≥3.0%, the initial increase and stabilization are the same as those for NHe<3.0%. However, after the formation of large interstitial clusters, they absorb interstitial atoms and grow, hindering recombination and reducing the annihilation rate of FPs, leading to a secondary increase. The large clusters are surrounded by vacancies and no longer hinder FP recombination, and a new balance is achieved, resulting in a secondary stabilization of the FP number.When NHe increases to 3.0%, the elastic modulus, yield strength, and toughness of single-crystal iron decrease by 21%, 88%, and 57%, respectively; beyond this concentration, the mechanical properties no longer decrease. This is because when NHe<3.0%, as helium concentration increases, helium-induced defects increase, leading to a decrease in toughness and promoting dislocation nucleation, thus reducing the elastic modulus and yield strength. When NHe≥3.0%, dislocations exist in the initial defects, and the number of clusters changes slightly; toughness no longer decreases, and dislocation nucleation is not affected, leading to the stabilization of elastic modulus and yield strength. At NHe=3.0%, the emergence of large clusters hinders the slip of slip systems, changes the direction of slip planes, weakens the role of the main slip system, results in an increase in small slip bands, and causes the plastic deformation mechanism to transform from cross-slip to decomposition into discrete dislocations and point defects after the meeting of slip bands.This study reveals the influence patterns and key mechanisms of helium concentration on defect evolution and mechanical properties of single-crystal iron, providing a theoretical basis for the design of fusion iron-based materials.
-
Keywords:
- Single-crystal iron /
- Helium concentration /
- Defect evolution /
- Mechanical properties
-
[1] Xie X Y, Mao C L, Liu C X, Luo J T, Liu Y C 2025 Int. J. Plast. 188 104313
[2] Yu M, Liu X K, Liu H Z, Jin S X, Xiong Y, Guo L P, Zhang W P 2025 Radiat. Phys. Chem. 237 113035
[3] Zhou H B, Wang J L, Jiang W, Lu G H, Aguiar J A, Liu F 2016 Acta Mater. 119 1
[4] Yamamoto T, Odette G R, Miao P, Edwards D J, Kurtz R J 2009 J. Nucl. Mater. 386-388 338
[5] Wang Y X, Xu Q, Yoshiie T, Pan Z Y 2008 J. Nucl. Mater. 376 133
[6] Hetherly J, Martinez E, Di Z F, Nastasi M, Caro A 2012 Scr. Mater. 66 17
[7] Han W Z, Demkowicz M J, Fu E G, Wang Y Q 2012 Misra A Acta Mater. 60 6341
[8] Ullmaier H 1984 Nucl. Fusion 24 1039
[9] Xia L D, Liu W B, Liu H P, Zhang J H, Chen H, Yang Z G, Zhang C 2018 Nucl. Eng. Technol. 50 132
[10] Wei Y P, Liu P P, Zhu Y M, Wang Z Q, Wan F R, Zhan Q 2016 J. Alloys Compd. 676 481
[11] Yang Z, Yang J Y, Liao Q, Xu S, Li B S 2021 Chin. Phys. B 30 056517.
[12] Guo H Y, Xia M, Yan Q Z, Guo L P, Chen J H, Ge C C 2016. Acta Phys. Sin. 65 077803(in Chinese) [郭洪燕,夏敏,燕青芝,郭立平,陈济红,葛昌纯 2016 物理学报 65 077803]
[13] Agarwal S, Bhattacharya A, Trocellier P, Zinkle S J 2019 Acta Mater. 163 14
[14] Harrison R W, Greaves G, Hinks J A, Donnelly S E 2017 J. Nucl. Mater. 495 492
[15] Morishita K, Sugano R, Wirth B D 2003 J. Nucl. Mater. 323 243
[16] Tschopp M, Gao F, Solanki K 2016 Acta Mater. 124 544
[17] Zhou Y L, Wang J, Hou Q, Deng A H 2014 J. Nucl. Mater. 446 49
[18] Chen M, Wang J, Hou Q 2009 Acta Phys. Sin. 58 1149(in Chinese) [陈敏,汪俊,侯氢 2009 物理学报 58 1149]
[19] Kobayashi R, Hattori T, Tamura T, Ogata S 2015 J. Nucl. Mater. 463 1071
[20] Galloway G J, Ackland G J 2013 Phys. Rev. B 87 104106
[21] Yu J N, Yu G, Yao Z W, Schäublin R 2007 J. Nucl. Mater. 367-370 462
[22] Lucas G, Schäublin R 2008 J. Phys. Condens. Matter 20 415206
[23] Hu N W, Deng H Q, Xiao S F, Hu W Y 2013 Nucl. Instrum. Methods Phys. Res. Sect. B 303 72
[24] Hu N W, Deng H Q, Wang C L, Hu W Y 2016 RSC Adv. 6 27113
[25] Yang L, Deng H Q, Gao F, Heinisch H L, Kurtz R J, Hu S Y, Li Y L, Zu X T 2013 Nucl. Instrum. Methods Phys. Res. Sect. B 303 68
[26] Gao C, Tian D F, Li M S, Qian D Z 2018 Nucl. Instrum. Methods Phys. Res., Sect. B 418 46
[27] Chen Y T, Morishita K 2022 Nucl. Mater. Energy 30 101150
[28] Yang Y S, Wang L S 2022 Int. J. Hydrogen Energy 47 24398
[29] Plimpton S 1995 J. Comput. Phys. 117 1
[30] Martínez E, Schwen D, Caro A 2015 Acta Mater. 84 208
[31] Caro A, Hetherly J, Stukowski A, Caro M, Martínez E, Srivilliputhur S, Zepeda-Ruiz L, Nastasi M 2011 J. Nucl. Mater. 418 261
[32] Wang L S, Yan S L, Meng M, Xue K M, Li P 2022 J. Nucl. Mater. 567 153818
[33] Anento N, Serra A 2020 Comput. Mater. Sci. 179 109679
[34] Li P, Wang L S, Yan S L, Meng M, Zhou Y F, Xue K M 2021 Int. J. Refract. Met. Hard Mater. 94 105376
[35] Hoover W G 1985 Phys. Rev. A 31 1695.
[36] Hoover W G 1986 Phys. Rev. A 34 2499.
[37] Gibson J B, Goland A N, Milgram M, Vineyard G H 1960 Phys. Rev. 120 1229.
[38] Nordlund K, Ghaly M, Averback R S, Caturla M, Diaz de la Rubia T, Tarus J 1998 Phys. Rev. B 57 7556
[39] Barrett C D, Tschopp M A, El Kadiri H 2012 Scr. Mater. 66 666
[40] Stukowski A 2010 Modelling Simul. Mater. Sci. Eng. 18 015012
[41] Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950
[42] Stukowski A 2012 Modelling Simul. Mater. Sci. Eng. 20 045021
[43] Stukowski A, Albe K 2010 Modelling Simul. Mater. Sci. Eng. 18 085001
[44] Stukowski A, Bulatov V V, Arsenlis A 2012 Modelling Simul. Mater. Sci. Eng. 20 085007
计量
- 文章访问数: 18
- PDF下载量: 0
- 被引次数: 0