搜索

x
专题

更多 
领域
文章类型

量子精密计量与操控

编者按:

量子信息是量子科学与信息科学的交叉学科,主要包括量子计算和量子通信。1980年,费曼从模拟量子力学体系的需求,班尼奥夫从降低计算机热耗的要求出发,分别提出了量子计算机的概念。1984年,量子密钥分发由班内特和布拉萨德提出,利用量子性质可现场发现窃听行为,从而实现安全地的数据传输。1995年,舒尔提出了大数质因子分解的量子算法,格罗夫提出了无需数据库的量子搜索算法,充分显示了量子计算机的强大计算功能,取得了量子计算的重大突破,从此量子计算的研究走上了世界科研的前沿,成为国际上具有重大战略意义的研究领域。而量子通信则能够抵御量子攻击,随着量子计算机研究的发展,量子通信也迅速发展,量子秘密共享、量子安全直接通信等相继提出。如今量子通信已经接近实用。


量子计量是继量子计算和量子通信后又一个量子信息的重要方向,利用量子性质可以大幅度地提高测量的精度,从而实现高精度的频率、时间和长度等的计量,而量子操控是量子计算和量子通信的核心操作。本刊组织的“量子精密计量与操控”专题,从电子自旋共振、核自旋共振操控,电场测量、纳米检测,以及多光子纠缠态制备、光子角动量态的制备与应用、压缩态产生与干涉、噪声下的量子网络等几个方面对近几年的创新性研究进行系统的介绍和综述,以期对相关研究领域的研究人员有所帮助。

客座编辑:清华大学物理系 龙桂鲁;中国科学院国家授时中心 张首刚
物理学报. 2015, 64(16).
六光子超纠缠态制备方案
丁东, 何英秋, 闫凤利, 高亭
2015, 64 (16): 160301. doi: 10.7498/aps.64.160301
摘要 +
自发参量下转换对应于一种非线性光学过程, 实验上作为一种标准方法, 人们利用自发参量下转换源产生纠缠光子对. 本文考虑由自发参量下转换源产生三对纠缠光子的情况. 通过使用由几组偏振光 束分束器、分束器和半波片等线性光学器件组成的量子线路演化三对光子, 给出了一个高效制备 包含偏振纠缠和空间纠缠的六光子超纠缠态方案. 因为方案中包含了参量下转换源产生三对纠缠光子 的所有可能情况, 所以本方案有很高的效率. 基于弱非线性介质构建了一个量子非破坏性测量装置, 用于区分光子在两指定的空间模中的两种分布情况. 特别地, 方案中可以通过合理约束在量子非破坏性测量过程中引入的非线性强度来达到实际实验所限定的数量级, 因此, 该方案易于在实验上实现.
光子两自由度超并行量子计算与超纠缠态操控
任宝藏, 邓富国
2015, 64 (16): 160303. doi: 10.7498/aps.64.160303
摘要 +
光子系统在量子信息处理和传输过程中有非常重要的应用. 譬如, 利用光子与原子(或人工原子)之间的相互作用, 可以完成信息的安全传输、存储和快速的并行计算处理等任务. 光子系统具有多个自由度, 如极化、空间模式、轨道角动量、时间-能量、频率等自由度. 光子系统的多个自由度可以同时应用于量子信息处理过程. 超并行量子计算利用光子系统多个自由度的光量子态同时进行量子并行计算, 使量子计算具有更强的并行性, 且需要的量子资源少, 更能抵抗光子数损耗等噪声的影响. 多个自由度同时存在纠缠的光子系统量子态称为超纠缠态, 它能够提高量子通信的容量与安全性, 辅助完成一些重要的量子通信任务. 在本综述中, 我们简要介绍了光子系统两自由度量子态在量子信息中的一些新应用, 包括超并行量子计算、超纠缠态分析、超纠缠浓缩和纯化三个部分.
平面自旋压缩态的产生与原子干涉的机理
黄馨瑶, 项玉, 孙风潇, 何琼毅, 龚旗煌
2015, 64 (16): 160304. doi: 10.7498/aps.64.160304
摘要 +
在玻色-爱因斯坦凝聚体中实现自旋压缩和量子纠缠, 对于提高原子干涉测量相位灵敏度和原子钟精度有着非常重要的意义. 基于一种新的平面自旋分量的不确定性关系, 介绍了如何利用两分量玻色-爱因斯坦凝聚系统中原子间相互作用提供的非线性效应和原子内部能级间线性耦合, 实现量子平面自旋压缩(挤压)和模式纠缠. 描述了一项关于平面压缩态的理论工作, 该工作利用哈密顿量的精确对角化求解系统基态, 优化非线性作用和线性耦合强度比值, 使得包含平均自旋方向在内的两个正交自旋分量的不确定度同时压缩, 因此在平面上所有相位角度的涨落都受到压制, 而在与该平面垂直的第三个自旋分量方向反压缩. 利用传统自旋压缩判定纠缠, 只能判断多个不可分辨的原子处于纠缠态, 而平面自旋压缩可以检测两个可区分模式(比如, 原子内态)间的纠缠, 从而在不同模式间进行量子信息处理. 同时, 为实现超越标准量子极限的原子干涉相位精密测量, 传统方式是利用单个自旋分量压缩, 但需要对待测相位角度有很好的估计, 或者可以进行多次测量以逐渐逼近可获得的最大压缩极限, 这就要求量子态可以被精确的重复制备. 而利用平面自旋压缩, 对任意未知相位角度只需要测量两个垂直自旋分量就可以实现高的相位测量灵敏度.
噪声情况下的量子网络直接通信
马鸿洋, 秦国卿, 范兴奎, 初鹏程
2015, 64 (16): 160306. doi: 10.7498/aps.64.160306
摘要 +
提出和研究了噪声情况下的量子网络直接通信. 通信过程中所有量子节点共享多粒子Greenberger-Horne-Zeilinger (GHZ)量子纠缠态; 发送节点将手中共享的GHZ态的粒子作为控制比特、传输秘密信息的粒子作为目标比特, 应用控制非门(CNOT)操作; 每个接收节点将手中共享GHZ 态的粒子作为控制比特、接收到的秘密信息粒子作为目标比特, 再次应用CNOT门操作从而获得含误码的秘密信息. 每个接收节点从秘密信息中提取部分作为检测比特串, 并将剩余的秘密信息应用奇偶校验矩阵纠正其中存在的比特翻转错误, 所有接收节点获得纠正后的秘密信息. 对协议安全、吞吐效率、通信效率等进行了分析和讨论.
量子直接通信
李熙涵
2015, 64 (16): 160307. doi: 10.7498/aps.64.160307
摘要 +
量子直接通信是量子通信中的一个重要分支, 它是一种不需要事先建立密钥而直接传输机密信息的新型通信模式. 本综述将介绍量子直接通信的基本原理, 回顾量子直接通信的发展历程, 从最早的高效量子直接通信协议、两步量子直接通信模型、量子一次一密直接通信模型等, 到抗噪声的量子直接通信模型以及基于单光子多自由度量子态及超纠缠态的量子直接通信模型, 最后介绍量子直接通信的研究现状并展望其发展未来.
时间频率基准装置的研制现状
阮军, 王叶兵, 常宏, 姜海峰, 刘涛, 董瑞芳, 张首刚
2015, 64 (16): 160308. doi: 10.7498/aps.64.160308
摘要 +
时间频率基准装置——铯原子喷泉钟, 在标准时间产生和保持、基础物理研究中发挥了重要的作用. 介绍了铯原子喷泉钟的工作原理, 对影响其性能的各项噪声源和频移项给出了分析, 影响频率稳定度性能的主要因素为Dick 效应相关的原子团装载时间、微波激励源相位噪声和探测激光的频率噪声, 影响频率不确定性能主要频移项为: 黑体辐射频移、冷原子碰撞频移、腔相位分布频移和微波泄露频移; 总结和比较了当前具有先进性能的铯原子喷泉钟采用的技术; 介绍了铯原子喷泉钟的主要应用方向、空间冷原子铯钟的研制情况和光学频率原子钟进展.
基于里德堡原子的电场测量
黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮
2015, 64 (16): 160702. doi: 10.7498/aps.64.160702
摘要 +
里德堡原子具有大的极化率、低的场电离阈值和大的电偶极矩,对外部电磁场十分敏感,可以用来测量电场强度特别是微波电场的强度. 利用里德堡原子的量子干涉效应(电磁诱导透明和Autler-Townes效应)测量微波电场强度的灵敏度远高于传统采用偶极天线测量微波电场的灵敏度. 此外,里德堡原子电场计 可以溯源到标准物理量,不需要额外校准; 采用玻璃探头,对待测电场干扰少; 灵敏度也不依赖于探头的物理尺寸. 同时,该电场计还可以实现对微波电场的偏振方向的测量, 实现亚波长和近场区域电场成像与测量. 通过选择不同的里德堡能级,可以实现1-500 GHz超宽频段范围内微波电场强度的测量. 主要综述基于里德堡原子的电场精密测量研究, 详细介绍了里德堡原子电场计的原理与实验进展, 并简单讨论了其发展方向.
光子高阶轨道角动量制备、调控及传感应用研究进展
陈理想, 张远颖
2015, 64 (16): 164210. doi: 10.7498/aps.64.164210
摘要 +
光子既是经典信息也是量子信息的理想载体. 单个光子不仅可以携带自旋角动量(与光波的圆偏振相关), 还可以携带轨道角动量(与光波的螺旋相位相关). 而轨道角动量的重要意义在于可利用单个光子的量子态构建一个高维的Hilbert空间, 从而实现高维量子信息的编码. 自Allen等于1992年确认光子轨道角动量的物理存在以来, 轨道角动量在经典光学和量子光学领域展现了诸多诱人的应用前景, 目前已成为国际光学领域的研究热点之一. 本综述将着重介绍高阶轨道角动量光束的制备与调控技术, 特别是高阶轨道角动量的量子纠缠态操控、旋转Doppler 效应测量及其在远程传感和精密测量技术中的应用.
腔光力学系统中的量子测量
陈雪, 刘晓威, 张可烨, 袁春华, 张卫平
2015, 64 (16): 164211. doi: 10.7498/aps.64.164211
摘要 +
腔光力学系统近年来迅猛发展, 在精密测量、量子传感等方面已展现出重要的应用价值. 特别是与微纳技术和冷原子技术结合后, 这一系统正发展成为研究量子测量与量子操控的理想平台. 本文首先综述腔光力学在量子测量, 尤其是量子测量基础理论研究方面的进展; 然后分析腔光力学系统中的量子测量原理; 最后介绍我们近来在这方面的研究进展, 并通过我们设计的一系列新颖的基于腔光力学系统的量子测量方案来具体展示该系统在量子测量、量子操控等方面的潜在应用.
基于回音壁微腔拉曼激光的纳米粒子探测
王涛, 杨旭, 刘晓斐, 雷府川, 高铭, 胡蕴琪, 龙桂鲁
2015, 64 (16): 164212. doi: 10.7498/aps.64.164212
摘要 +
回音壁模式光学微腔由于其品质因子高、模式体积小等优点, 近年来在非标记性的纳米粒子探测方面得到了广泛的重视, 开展了大量的研究, 取得了重要的进展. 利用回音壁微腔的拉曼激光, 通过测量纳米粒子造成的模式劈裂的拍频, 可以实现不同环境下纳米粒子的实时探测. 与传统的稀土离子掺杂法不同, 这种方法采用腔的内禀增益, 不仅提高了应用回音壁模式微腔进行纳米粒子探测的极限, 而且避免了传统方法中稀土离子能级对泵浦光的限制, 拓展了应用范围. 这种方法还可以应用于其他材料的回音壁微腔, 如硅基微环腔等, 以及光子晶体结构、超材料等受损耗限制的系统中. 本文简单介绍了回音壁模式光学微腔进行纳米粒子探测的基本原理以及最新研究进展.
准一维半导体量子点中电偶极自旋共振的物理机理
李睿
2015, 64 (16): 167303. doi: 10.7498/aps.64.167303
摘要 +
半导体量子点中的电子自旋具有较长相干时间以及可扩展性的特点, 在近十几年来引起了人们的广泛兴趣. 人们常常利用电子自旋共振技术来对单个自旋进行操纵. 这样不但需要一个静磁场来使电子产生赛曼劈裂, 同时还需要一个与之垂直的局域振荡磁场. 但是, 在实验上产生足够强且具有固定频率的局域磁场是比较困难的. 后来人们发现, 局域的振荡电场也可以操纵单个电子自旋, 也就是所谓的电偶极自旋共振. 众所周知, 自旋只有自旋磁矩, 不会与电场有任何直接的相互作用. 所以, 电偶极自旋共振的发生必须依赖于某些媒质. 这些媒质包括:量子点材料中的自旋轨道耦合作用, 量子点中的局域磁场梯度, 以及量子点中电子自旋与核自旋的超精细相互作用. 这些媒质能诱导出自旋与电场之间间接的相互作用, 从而外电场操纵单个电子自旋得以实现. 本文总结归纳了目前半导体量子点系统中发生电偶极自旋共振的三种主要物理机理.
核磁共振中的量子控制
李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰
2015, 64 (16): 167601. doi: 10.7498/aps.64.167601
摘要 +
近年来, 随着量子信息科学的发展, 对由量子力学原理描述的微观世界的主动调控已成为重要的前沿研究领域. 为构造实际的量子信息处理器, 一个关键的挑战是: 如何对处于噪声环境下的量子体系实现一系列高精度的任意操作, 以完成目标量子信息处理任务. 为此, 人们将经典系统控制论的思想方法延伸到量子体系的领域, 提出了大量的量子控制方法以及相关的数值技术(如量子优化控制、量子反馈控制等), 并取得了丰富的研究成果. 核磁共振自旋体系具备成熟的系统理论和操控技术, 为量子控制方法的实用性研究提供了优秀的实验测试平台. 因此, 基于核磁共振的量子控制成为量子控制领域的重要方向. 本文简要介绍了量子控制的基本概念和方法; 从系统控制论的角度对核磁共振自旋体系的基本原理和重要控制任务做了阐述; 介绍了近些年来在该领域发展的相关控制方法及其应用; 对基于核磁共振体系的量子控制的进一步的研究做了几点展望.