无序合金的序调控

2025, 74 (13): 136401.
doi: 10.7498/aps.74.20250392
摘要 +
非晶合金高温流变行为是理解其结构演化与动力学行为的重要窗口, 阐明其动力学弛豫行为与流变行为的内秉性关联是理解非晶固体变形行为的重要研究内容之一. 本文基于动态力学分析仪从激活体积和缺陷演化动力学角度系统探究了三种La基非晶合金的高温流变行为与动力学弛豫特征的耦合机理. 在自由体积理论框架下通过应变率跳跃实验, 揭示了非晶合金的流变应力随温度和应变率变化的双曲正弦依赖关系, 建立了高温流变激活能与α弛豫过程的关联. 参考应变率与温度正相关, 反映非晶合金结构非均匀性对原子扩散速率的调控. 此外, β弛豫激活能与高温流变平均激活能呈相反趋势, 为β弛豫作为α弛豫前驱过程提供理论依据. 缺陷湮灭与生成速率的动态竞争主导了非晶合金的高温流变行为, 以动力学参量定量描述了非晶合金热力耦合变形特征. 研究结果为非晶合金高温变形机制的微观解释提供了实验数据与理论指导, 有利于优化其高温加工与成型工艺.

2025, 74 (13): 138102.
doi: 10.7498/aps.74.20250518
摘要 +
高熵合金纤维因其优异的力学性能和稳定性, 在高科技领域具有广阔的应用前景. 然而, 该类材料强塑性不匹配的问题制约了其进一步应用, 虽然热处理可以进一步优化其力学性能, 但传统热处理方法对时间和能源的消耗较高, 且难以精准调控材料的组织, 易导致晶粒粗化. 本文采用电流处理技术调制微米级(直径~70 μm)冷拔态CoCrFeNi高熵合金纤维的性能, 采用电子背散射衍射、透射电子显微镜以及同步辐射等技术探讨了电流处理过程中的热效应与非热效应对材料组织结构和力学性能的影响, 建立了CoCrFeNi纤维再结晶形核和长大模型. 相比于传统热处理, 电流处理过程中电子风力和焦耳热效应的协同作用显著加快再结晶过程, 获得更细小且均匀的晶粒, 并有效降低位错密度, 进而获得更优异的力学性能. 电流处理可获得屈服强度为400—2033 MPa的纤维, 延伸率最高可达53%. 本文证实, 电流处理可作为优化高熵合金纤维组织结构及性能的有效手段, 为高性能金属纤维的制备及工程化应用提供理论支撑和工艺指导.

2025, 74 (13): 136101.
doi: 10.7498/aps.74.20250585
摘要 +
在现代电子通信、人工智能产业快速变革的浪潮中, 第3代半导体的规模化应用推动着高性能高频软磁材料需求的日益增长. 然而, 传统软磁材料的基本性能之间存在着复杂的权衡关系, 例如饱和磁化强度与矫顽力、磁导率与损耗、机械强度与矫顽力往往不能同时兼得. 非晶基软磁材料以内部不同尺度序结构作为关键功能基元, 催生了极其丰富的物理特性. 序调控是一种通过优化序结构本征特性、序构形式来提升性能的理念, 为突破软磁性能的矛盾关系开拓了新的设计维度. 本文首先介绍了软磁材料的发展历程, 然后阐述了序调控的科学理论基础, 综述了基于序调控工程创制高性能非晶基软磁材料的最新进展, 重点介绍短程序、中程序、非晶-纳米晶双相等影响宏观物性的关键序构形式对软磁性能的影响及其作用机制, 最后指出了面向未来高精尖产业前沿的新一代高频软磁材料发展方向.

2025, 74 (8): 086103.
doi: 10.7498/aps.74.20250141
摘要 +
中熵合金因其独特的强塑性协同效应, 在高应变速率服役的结构材料领域展现出广阔应用前景. 本研究聚焦于NiCoV中熵合金体系, 通过引入高熔点钨元素(原子含量为5%)进行合金化设计, 采用真空电弧熔炼结合热机械处理工艺制备了(NiCoV)95W5合金. 基于分离式霍普金森压杆实验平台, 系统揭示了该合金在2000—6000 s–1高应变速率下的动态响应机制与变形机理. 研究发现: 合金展现出优异的应变速率敏感性(m = 0.42), 当应变速率从准静态(10–3 s–1)提升至动态(6000 s–1)时, 屈服强度显著提升162% (720→1887 MPa), 这一强化效应源于高应变速率下晶格畸变诱导的声子拖曳作用显著增强. 通过显微分析, 揭示了该合金体系在高应变速率下的多尺度协同变形机理: 2000 s–1时以位错平面滑移为主导, 当速率增至4000 s–1时形成高密度位错缠结网络并激发部分析出相协同变形, 而在6000 s–1条件下则通过诱发变形孪晶实现加工硬化的存续. 本研究阐明了W元素掺杂的NiCoV中熵合金动态力学行为与变形机制, 为设计具有优异动态力学响应的新型结构材料提供了参考.

2025, 74 (8): 086102.
doi: 10.7498/aps.74.20250128
摘要 +
多主元合金, 亦称为高熵合金, 作为一种新型合金材料, 因其优异的力学性能和热稳定性在多个领域展现出巨大的应用潜力. 本文采用分子动力学模拟方法, 以3种典型的体心立方结构多主元合金——TaWNbMo, TiZrNb和CoFeNiTi为研究对象, 系统研究了合金中的原子局域晶格畸变特征及其影响因素. 通过冯·米塞斯应变和体积应变作为描述符, 定量分析了合金中原子应变的分布及其与晶格畸变的关系. 研究结果表明, 晶格畸变越大, 冯·米塞斯应变和体积应变的分布范围越广, 且应变值显著增大. 进一步分析发现, 合金中的原子半径差异、化学短程有序结构以及温度均显著影响原子应变. 具体而言, 原子半径差异越大, 体积应变越大, 而化学短程有序结构的形成有助于减小晶格畸变和原子应变. 温度的升高则会导致晶格振动加剧, 从而增大原子应变. 本文的研究为理解高熵合金的微观力学行为提供了新的视角, 并为其在高温和极端环境下的应用设计提供了理论支持.

2025, 74 (8): 086101.
doi: 10.7498/aps.74.20250097
摘要 +
多主元合金概念的提出颠覆了传统物理冶金的理念, 极大地拓展了材料设计空间. 合金相图从热力学角度揭示成分、热力学与结构之间的关系, 对指导材料优化具有重要意义. 传统实验方法测定相图费时耗力, 且面临着测量条件、成分控制、高温高压等因素限制, 系统评估相图和热力学性质困难. 在此工作中, 我们以典型等原子比镍钴铬合金为原型材料, 采用元动力学、动态概率增强采样和扩展系综模拟相结合的方法, 克服原子尺度模拟的时间尺度限制, 系统地绘制了镍钴铬在高温、高压条件下的温度-压力相图, 并计算了不同热力学条件下该材料体心立方晶体与液体相变的自由能面. 基于自由能路径, 量化了晶化和熔化相变过程中, 激活能、激活体积、激活熵与温度、压力的关系, 从而揭示了压力和温度分别通过影响激活体积和激活熵, 进而影响熔化和晶化动力学的物理机制. 该研究为理解多主元合金的热力学与相变动力学提供了理论支持, 探索了其在极端条件下结构稳定性.