-
非晶合金高温流变行为是理解其结构演化与动力学行为的重要窗口,阐明其动力学弛豫行为与流变行为的内秉性关联是理解非晶固体变形行为的重要研究内容之一。本文基于动态力学分析仪从激活体积和缺陷演化动力学角度系统探究了三种La基非晶合金的高温流变行为与动力学弛豫特征的耦合机理。在自由体积理论框架下通过应变率跳跃实验结合揭示了非晶合金的流变应力随温度和应变率变化的双曲正弦依赖关系,建立了高温流变激活能与α弛豫过程的关联。参考应变率与温度正相关,反映非晶合金结构非均匀性对原子扩散速率的调控。此外,β弛豫激活能与高温流变平均激活能呈相反趋势,为β弛豫作为α弛豫前驱过程提供理论依据。缺陷湮灭与生成速率的动态竞争主导了非晶合金的高温流变行为,以动力学参量定量描述了非晶合金热力耦合变形特征。研究结果为非晶合金高温变形机制的微观解释提供了实验数据与理论指导,有利于优化其高温加工与成型工艺。This study aims to establish the intrinsic link between the high-temperature rheological behavior and kinetic relaxation characteristics of La-based metallic glasses. By conducting dynamic mechanical analysis and high-temperature tensile strain-rate jump experiments on three La-based metallic glasses with significant β relaxation, and combining the findings with the free volume theory framework, we systematically investigate their high-temperature rheological properties. The results show that within the normalized temperature range, the steady-state flow stress and activation volume evolution trends are consistent. The average activation energy for high-temperature rheology aligns with the activation energy range of α relaxation, confirming the strong association between rheological behavior and α relaxation. The activation energy for β relaxation exhibits an opposite trend, suggesting it may precede α relaxation. A dynamic competition between defect annihilation and generation governs the rheological behavior, and kinetic parameters reveal the temperature and strain-rate sensitivity of metallic glasses. This study offers a theoretical basis for optimizing the high-temperature mechanical properties of La-based metallic glasses and provides new insights for understanding the coupling relationship between multi-scale relaxation behavior and rheological mechanisms in metallic glasses.
-
[1] Wang W H 2019 Prog. Mater. Sci. 106 100561
[2] Yu H-B, Gao L, Gao J-Q, Samwer K 2024 Natl. Sci. Rev. 11 nwae091
[3] Alem S A A, Sabzvand M H, Govahi P, Poormehrabi P, Hasanzadeh Azar M, Salehi Siouki S, Rashidi R, Angizi S, Bagherifard S 2025 Adv. Compos. Hybrid Mater. 8 3
[4] Wang Z, Jin F, Li W, Ruan J Y, Wang L F, Wu X L, Zhang Y K, Yuan C C 2024 Acta Phys. Sin. 73 217101(in Chinese)[王壮,金凡,李伟,阮嘉艺,王龙飞,吴雪莲,张义坤,袁晨晨2024物理学报73 217101]
[5] Wang W H, Yang Y, Nieh T G, Liu C T 2015 Intermetallics 67 81
[6] Fan Z, Li Q, Fan C, Wang H, Zhang X 2019 J. Mater. Res. 34 1595
[7] Wang J Q, Ouyang S 2017 Acta Phys. Sin. 66 176102(in Chinese)[王军强,欧阳酥2017物理学报66 176102]
[8] Liang S Y, Zhang L T, Wang Y J, Wang B, Pelletier J M, Qiao J C 2024 Int. J. Fatigue 187 108446
[9] Tong Y, Song L, Gao Y, Fan L, Li F, Yang Y, Mo G, Liu Y, Shui X, Zhang Y, Gao M, Huo J, Qiao J, Pineda E, Wang J Q 2023 Nat. Commun. 14 8407
[10] Gallino I, Cangialosi D, Evenson Z, Schmitt L, Hechler S, Stolpe M, Ruta B 2018 Acta Mater. 144 400
[11] Li W, Zuo X F, Liu R, Pang C M, Jin F, Zhu W W, Yuan C C 2024 Int. J. Plast. 174 103893
[12] Kelly J P, Fuller S M, Seo K, Novitskaya E, Eliasson V, Hodge A M, Graeve O A 2016 Mater. Des. 93 26
[13] Zhang Y, Li C, Fu X, Hou S, Li C, Kou S, Li X 2025 J. Alloy. Compd. 1020 179364
[14] Wu Z W, Wang W H 2020 Acta Phys. Sin. 69 066101(in Chinese)[武振伟,汪卫华2020物理学报69 066101]
[15] Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250
[16] Zhang L T, Wang Y J, Yang Y, Qiao J C 2022 Sci. China-Phys. Mech. Astron. 65 106111
[17] Ding Y, Shi F, Wang X, Bai Y, Wang Z, Hu L 2024 Acta Mater. 266 119698
[18] Zhu F, Song S, Reddy K M, Hirata A, Chen M 2018 Nat. Commun. 9 3965
[19] Jiao W, Wen P, Peng H L, Bai H Y, Sun B A, Wang W H 2013 Appl. Phys. Lett. 102 101903
[20] Meng S, Hao Q, Wang B, Wang Y, Pineda E, Qiao J 2025 J. Appl. Phys. 137 055108
[21] Qiao J, Pineda E 2025 European Journal of Physics
[22] Monnier X, Cangialosi D, Ruta B, Busch R, Gallino I 2020 Sci. Adv. 6 1454
[23] Duan Y J, Zhang L T, Qiao J C, Wang Y J, Yang Y, Wada T, Kato H, Pelletier J M, Pineda E, Crespo D 2022 Phys. Rev. Lett. 129 175501
[24] Yu H B, Shen X, Wang Z, Gu L, Wang W H, Bai H Y 2012 Phys. Rev. Lett. 108 5
[25] Liang D D, Wang X D, Ge K, Cao Q P, Jiang J Z 2014 J. Non-Cryst. Solids 383 97
[26] Wang W H 2012 Prog. Mater. Sci. 57 487
[27] Zhang L T, Wang Y J, Pineda E, Yang Y, Qiao J C 2022 Int. J. Plast. 157 103402
[28] Zhu Y, Shang T, Yuan J, Song Z, Luo W, Zhang J, Li M 2024 J. Non-Cryst. Solids 645 123196
[29] Su S, Zhao W, Su X, Shadangi Y, Jin Z, Ning Z, Zhang Y, Sun J, Huang Y 2025 J. Mater. Sci. Technol. 227 304
[30] Su S, Liu C Y, Su X, Shadangi Y, Cao G Y, Ning Z L, Sun J F, Huang Y J, Eckert J 2025 Rare Metals 120501
[31] Spaepen F 1977 Acta Metall. 25 407
[32] Bletry M, Guyot P, Bréchet Y, Blandin J J, Soubeyroux J L 2007 Acta Mater. 55 6331
[33] Homer E R, Schuh C A 2009 Acta Mater. 57 2823
[34] Anand L, Su C 2007 Acta Mater. 55 3735
[35] Rao W, Chen Y, Dai L H 2022 Int. J. Plast. 154 103309
[36] Liang S Y, Zhang L T, Wang B, Wang Y J, Pineda E, Qiao J C 2024 Intermetallics 164 108115
[37] Hao Q, Lyu G J, Pineda E, Pelletier J M, Wang Y J, Yang Y, Qiao J C 2024 Int. J. Plast. 175 103926
[38] Mo J, Shen B, Wan Y, Zhou Z, Sun B, Liang X 2020 J. Non-Cryst. Solids 528 119742
[39] Yuan S, Liang A, Liu C, Tian L, Mousseau N, Branicio P S 2023 Phys. Rev. Mater. 7 123603
[40] Liang S Y, Zhu F, Wang Y J, Pineda E, Wada T, Kato H, Qiao J C 2024 Int. J. Eng. Sci. 205 104146
[41] Huang B B, Hao Q, Lyu G J, Qiao J C 2023 Acta Phys. Sin. 72 136101(in Chinese)[黄蓓蓓,郝奇,吕国建,乔吉超2023物理学报72 136101]
[42] Gong X, Wang X D, Xu T, Cao Q, Zhang D, Jiang J Z 2021 J. Phys. Chem. B 125 657
[43] Jiang W, Zhao Y, Zhang B 2021 J. Non-Cryst. Solids 571
[44] Li R, Pang S, Ma C, Zhang T 2007 Acta Mater. 55 3719
[45] Anand L, Su C 2005 J. Mech. Phys. Solids 53 1362
[46] Meduri C, Hasan M, Adam S, Kumar G 2018 J. Alloy. Compd. 732 922
[47] Li L, Homer E R, Schuh C A 2013 Acta Mater. 61 3347
[48] Kato H, Igarashi H, Inoue A 2008 Mater. Lett. 62 1592
[49] Liu Y, Yang Z, Yang Y, Luo J, Huang X 2024 J. Non-Cryst. Solids 629 122891
[50] Bian X L, Wang G, Chen H C, Yan L, Wang J G, Wang Q, Hu P F, Ren J L, Chan K C, Zheng N, Teresiak A, Gao Y L, Zhai Q J, Eckert J, Beadsworth J, Dahmen K A, Liaw P K 2016 Acta Mater. 106 66
[51] Yoo B G, Park K W, Lee J C, Ramamurty U, Jang J I 2009 J. Mater. Res. 24 1405
[52] Cheng Y T, Hao Q, Pelletier J M, Pineda E, Qiao J C 2021 Int. J. Plast. 146 103107
[53] Lass E A, Zhu A, Shiflet G J, Joseph Poon S 2011 Acta Mater. 59 6341
[54] Pan S, Zheng G P, Qiao J, Niu X, Wang W, Qin J 2019 J. Alloy. Compd. 799 450
[55] Acharya A, Widom M 2017 J. Mech. Phys. Solids 104 1
[56] Rao W, Chen Y, Dai L H, Jiang M Q 2025 J. Mech. Phys. Solids 196 106002
[57] Jiang J, Lu Z, Shen J, Wada T, Kato H, Chen M 2021 Nat. Commun. 12 3843
[58] Schirmacher W, Ruocco G, Mazzone V 2015 Phys. Rev. Lett. 115 015901
[59] Meng S Y, Hao Q, Lyu G J, Qiao J C 2023 Acta Phys. Sin. 72 076101(in Chinese)[孟绍怡,郝奇,吕国建,乔吉超2023物理学报72 076101]
[60] Xing G, Hao Q, Zhu F, Wang Y J, Yang Y, Kato H, Pineda E, Lan S, Qiao J 2024 Sci. China-Phys. Mech. Astron. 67 256111
[61] Ju J D, Atzmon M 2014 Acta Mater. 74 183
[62] Yamasaki T, Maeda S, Yokoyama Y, Okai D, Fukami T, Kimura H M, Inoue A 2006 Intermetallics 14 1102
[63] Hasan O A, Boyce M C 1995 Polym. Eng. Sci. 35 331
[64] Wu F F, Zhang Z F, Mao S X 2009 Acta Mater. 57 257
[65] Qiao J W, Zhang Y, Jia H L, Yang H J, Liaw P K, Xu B S 2012 Appl. Phys. Lett. 100 121902
[66] Wu L, Zhu Z, Liu D, Fu H, Li H, Wang A, Zhang H, Li Z, Zhang L, Zhang H 2020 J. Mater. Sci. Technol. 37 64
[67] Jiang S S, Zhu L, Liu S N, Yang Z Z, Lan S, Wang Y G 2022 Acta Phys. Sin. 71 058101(in Chinese)[江双双,朱力,刘思楠,杨詹詹,兰司,王寅岗2022物理学报71 058101]
计量
- 文章访问数: 54
- PDF下载量: 1
- 被引次数: 0