搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含有倾斜界面硅/锗超晶格的导热性能

刘英光 任国梁 郝将帅 张静文 薛新强

引用本文:
Citation:

含有倾斜界面硅/锗超晶格的导热性能

刘英光, 任国梁, 郝将帅, 张静文, 薛新强
cstr: 32037.14.aps.70.20201807

Thermal conductivity of Si/Ge superlattices containing tilted interface

Liu Ying-Guang, Ren Guo-Liang, Hao Jiang-Shuai, Zhang Jing-Wen, Xue Xin-Qiang
cstr: 32037.14.aps.70.20201807
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 采用非平衡分子动力学(NEMD)方法模拟含有倾斜界面的硅/锗(Si/Ge)超晶格在不同倾斜角、不同周期长度、不同样本长度和不同温度下的导热性能. 模拟结果表明, Si/Ge超晶格的热导率随着界面倾斜角的增加而非单调变化. 当周期长度为4—8原子层时, 界面倾斜角为45°的热导率比其他界面倾斜角时热导率增大了一个数量级, 且热导率随样本长度的增加而增加, 随温度的增加而减小. 然而当周期长度为20原子层时, 由于声子局域化的存在, 热导率对样本长度和温度的依赖性都较弱.
    The non-equilibrium molecular dynamics (NEMD) method is used to study the thermal conductivities of Si/Ge superlattices with tilted interface under different period lengths, different sample lengths, and different temperatures. The simulation results are as follows. The thermal conductivity of Si/Ge superlattices varies nonmonotonically with the increase of interface angle: when the period length is 4–8 atomic layers, the thermal conductivity for the interface angle of 45° is one order of magnitude larger than those for other interface angles, and the thermal conductivity increases linearly with the sample length increasing and decreases with the temperature increasing. However, when the period length is 20 atomic layers, the thermal conductivity is weakly dependent on sample length and temperature due to the existence of phonon localization.
      通信作者: 刘英光, liuyingguang@ncepu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52076080)、河北省自然科学基金(批准号: E2020502011)和中央高校基本科研究业务费(批准号: 2020MS105)资助的课题
      Corresponding author: Liu Ying-Guang, liuyingguang@ncepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52076080), the Natural Science Foundation of Hebei Province, China (Grant No. E2020502011), and the Fundamental Research Fund for the Central Universities, China (Grant No. 2020MS105)
    [1]

    张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军 2016 物理学报 65 107201Google Scholar

    Zhang Y, Wu L H, Zengli J K, Liu Y F, Zhang J Y, Xing J J, Luo J 2016 Acta. Phys. Sin. 65 107201Google Scholar

    [2]

    张程宾, 程启坤, 陈永平 2014 物理学报 63 236601Google Scholar

    Zhang C B, Cheng Q K, Chen Y P 2014 Acta. Phys. Sin. 63 236601Google Scholar

    [3]

    Chen Z Y, Wang R F, Wang G Y, Zhou X Y, Wang Z S, Yin C, Hu Q, Zhou B Q, Tang J, Ang R 2018 Chin. Phys. B 27 47202Google Scholar

    [4]

    Wang K X, Wang J W, Li Y, Zou T, Wang X H, Li J B, Cao Z, Shi W J, Xinba Yaer 2018 Chin. Phys. B 27 48401Google Scholar

    [5]

    Xu X, Zhou J, Chen J 2020 Adv. Funct. Mater 30 1904704Google Scholar

    [6]

    Zhang Z W, Ouyang Y L, Cheng Y, Chen J, Li N B, Zhang G 2020 Phys. Rep.-Rev. Sec. Phys. Lett. 860 1

    [7]

    惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉 2014 物理学报 63 074401Google Scholar

    Hui Z X, He P F, Dai Y, Wu A H 2014 Acta. Phys. Sin. 63 074401Google Scholar

    [8]

    Yang R, Chen G 2004 Phys. Rev. B 69 195316Google Scholar

    [9]

    Chen G 1998 Phys. Rev. B 57 14958Google Scholar

    [10]

    Hu M, Poulikakos D 2012 Nano Lett. 12 5487Google Scholar

    [11]

    Juntunen T, Vänskä O, Tittonen I 2019 Phys. Rev. Lett. 122 105901Google Scholar

    [12]

    Xiong R, Yang C, Wang Q, Zhang Y, Li X 2019 Int. J. Thermophys. 40 86Google Scholar

    [13]

    Garg J, Bonini N, Marzari N 2011 Nano Lett. 11 5135Google Scholar

    [14]

    Luckyanova M N, Garg J, Esfarjani K, Jandl A, Bulsara M T, Schmidt A J, Minnich A J, Chen S, Dresselhaus M S, Ren Z F, Fitzgerald E A, Chen G 2012 Science 338 936Google Scholar

    [15]

    Cheaito R, Polanco C A, Addamane S, Zhang J, Ghosh A W, Balakrishnan G, Hopkins P E 2018 Phys. Rev. B 97 085306Google Scholar

    [16]

    Tian Z, Esfarjani K, Chen G 2014 Phys. Rev. B 89 235307Google Scholar

    [17]

    Tian Z, Esfarjani K, Chen G 2012 Phys. Rev. B 86 235304Google Scholar

    [18]

    Garg J, Chen G 2013 Phys. Rev. B 87 93

    [19]

    Elapolu M S R, Tabarraei A 2018 Comput. Mater. Sci. 144 161Google Scholar

    [20]

    刘英光, 边永庆, 韩中合 2020 物理学报 69 033101Google Scholar

    Liu Y G, Bian Y Q, Han Z H 2020 Acta. Phys. Sin. 69 033101Google Scholar

    [21]

    Fujii S, Yokoi T, Yoshiya M 2019 Acta Mater. 171 154Google Scholar

    [22]

    Bagri A, Kim S P, Ruoff R S, Shenoy V B 2011 Nano Lett. 11 3917Google Scholar

    [23]

    Tan M, Hao Y, Deng Y, Yan D, Wu Z 2018 Sci Rep 8 6384Google Scholar

    [24]

    Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306Google Scholar

    [25]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [26]

    Dickey J M, Paskin A 1969 Phys. Rev. 188 1407Google Scholar

    [27]

    Chen J, Zhang G, Li B 2010 Nano Lett. 10 3978Google Scholar

    [28]

    Zhang Z, Chen Y, Xie Y, Zhang S 2016 Appl. Therm. Eng. 102 1075Google Scholar

    [29]

    Zhang Z W, Hu S Q, Xi Q, Nakayama T, Volz S, Chen J, Li B W 2020 Phys. Rev. B 101 081402 6

    [30]

    Liang T, Zhou M, Zhang P, Yuan P, Yang D 2020 Int. J. Heat Mass Transfer 151 119395Google Scholar

    [31]

    Liu Q, Luo H, Wang L, Shen S 2017 J. Phys. D-Appl. Phys. 50 065108Google Scholar

    [32]

    Ma Y L, Zhang Z W, Chen J G, Saaskilahti K, Volz S, Chen J 2018 Carbon 135 263Google Scholar

    [33]

    Sääskilahti K, Oksanen J, Tulkki J, Volz S 2014 Phys. Rev. B 90 134312Google Scholar

    [34]

    Sääskilahti K, Oksanen J, Tulkki J, Volz S 2016 Phys. Rev. E 93 052141Google Scholar

    [35]

    Hu S Q, Zhang Z W, Jiang P F, Ren W J, Yu C Q, Shiomi J, Chen J 2019 Nanoscale 11 11839Google Scholar

    [36]

    Hu S Q, Zhang Z W, Jiang P F, Chen J, Volz S, Nomura M, Li B W 2018 J. Phys. Chem. Lett. 9 3959Google Scholar

    [37]

    Zhang Z W, Hu S Q, Nakayama T, Chen J, Li B W 2018 Carbon 139 289Google Scholar

  • 图 1  NEMD 模拟计算热性质的示意图

    Fig. 1.  Schematic diagram of the NEMD model for calculating the thermal properties.

    图 2  周期长度为20原子层厚度时不同界面倾斜角的示意图

    Fig. 2.  Schematic diagram of different tilted interface angles with the period length of 20 atomic layers.

    图 3  不同周期长度下热导率与倾斜角的关系

    Fig. 3.  The relationship between thermal conductivity and tilted angle as the different period length.

    图 4  不同周期长度Si/Ge超晶格的声子态密度

    Fig. 4.  The PDOS of Si/Ge superlattices with different period lengths.

    图 5  倾斜角度为45º时4Si × 4Ge和10Si × 10Ge超晶格的频谱热导

    Fig. 5.  Spectral thermal conductance of 4Si × 4Ge and 10Si × 10Ge superlattices at the tilt angle of 45°.

    图 6  不同倾斜角下Si/Ge超晶格的声子态密度

    Fig. 6.  The PDOS of Si/Ge superlattices with different tilted angle.

    图 7  Si/Ge超晶格热导率与样本长度的关系

    Fig. 7.  Thermal conductivity of Si/Ge superlattice vs. sample total length.

    图 8  Si/Ge超晶格热导率与温度的关系

    Fig. 8.  Temperature dependent thermal conductivity of Si/Ge superlattice.

    图 9  (a)不同周期长度时的声子参与率; (b)不同样本长度的声子参与率

    Fig. 9.  (a)The participation ratio of superlattices with different period length; (b) the participation ratio of superlattices with different sample length.

  • [1]

    张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军 2016 物理学报 65 107201Google Scholar

    Zhang Y, Wu L H, Zengli J K, Liu Y F, Zhang J Y, Xing J J, Luo J 2016 Acta. Phys. Sin. 65 107201Google Scholar

    [2]

    张程宾, 程启坤, 陈永平 2014 物理学报 63 236601Google Scholar

    Zhang C B, Cheng Q K, Chen Y P 2014 Acta. Phys. Sin. 63 236601Google Scholar

    [3]

    Chen Z Y, Wang R F, Wang G Y, Zhou X Y, Wang Z S, Yin C, Hu Q, Zhou B Q, Tang J, Ang R 2018 Chin. Phys. B 27 47202Google Scholar

    [4]

    Wang K X, Wang J W, Li Y, Zou T, Wang X H, Li J B, Cao Z, Shi W J, Xinba Yaer 2018 Chin. Phys. B 27 48401Google Scholar

    [5]

    Xu X, Zhou J, Chen J 2020 Adv. Funct. Mater 30 1904704Google Scholar

    [6]

    Zhang Z W, Ouyang Y L, Cheng Y, Chen J, Li N B, Zhang G 2020 Phys. Rep.-Rev. Sec. Phys. Lett. 860 1

    [7]

    惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉 2014 物理学报 63 074401Google Scholar

    Hui Z X, He P F, Dai Y, Wu A H 2014 Acta. Phys. Sin. 63 074401Google Scholar

    [8]

    Yang R, Chen G 2004 Phys. Rev. B 69 195316Google Scholar

    [9]

    Chen G 1998 Phys. Rev. B 57 14958Google Scholar

    [10]

    Hu M, Poulikakos D 2012 Nano Lett. 12 5487Google Scholar

    [11]

    Juntunen T, Vänskä O, Tittonen I 2019 Phys. Rev. Lett. 122 105901Google Scholar

    [12]

    Xiong R, Yang C, Wang Q, Zhang Y, Li X 2019 Int. J. Thermophys. 40 86Google Scholar

    [13]

    Garg J, Bonini N, Marzari N 2011 Nano Lett. 11 5135Google Scholar

    [14]

    Luckyanova M N, Garg J, Esfarjani K, Jandl A, Bulsara M T, Schmidt A J, Minnich A J, Chen S, Dresselhaus M S, Ren Z F, Fitzgerald E A, Chen G 2012 Science 338 936Google Scholar

    [15]

    Cheaito R, Polanco C A, Addamane S, Zhang J, Ghosh A W, Balakrishnan G, Hopkins P E 2018 Phys. Rev. B 97 085306Google Scholar

    [16]

    Tian Z, Esfarjani K, Chen G 2014 Phys. Rev. B 89 235307Google Scholar

    [17]

    Tian Z, Esfarjani K, Chen G 2012 Phys. Rev. B 86 235304Google Scholar

    [18]

    Garg J, Chen G 2013 Phys. Rev. B 87 93

    [19]

    Elapolu M S R, Tabarraei A 2018 Comput. Mater. Sci. 144 161Google Scholar

    [20]

    刘英光, 边永庆, 韩中合 2020 物理学报 69 033101Google Scholar

    Liu Y G, Bian Y Q, Han Z H 2020 Acta. Phys. Sin. 69 033101Google Scholar

    [21]

    Fujii S, Yokoi T, Yoshiya M 2019 Acta Mater. 171 154Google Scholar

    [22]

    Bagri A, Kim S P, Ruoff R S, Shenoy V B 2011 Nano Lett. 11 3917Google Scholar

    [23]

    Tan M, Hao Y, Deng Y, Yan D, Wu Z 2018 Sci Rep 8 6384Google Scholar

    [24]

    Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306Google Scholar

    [25]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [26]

    Dickey J M, Paskin A 1969 Phys. Rev. 188 1407Google Scholar

    [27]

    Chen J, Zhang G, Li B 2010 Nano Lett. 10 3978Google Scholar

    [28]

    Zhang Z, Chen Y, Xie Y, Zhang S 2016 Appl. Therm. Eng. 102 1075Google Scholar

    [29]

    Zhang Z W, Hu S Q, Xi Q, Nakayama T, Volz S, Chen J, Li B W 2020 Phys. Rev. B 101 081402 6

    [30]

    Liang T, Zhou M, Zhang P, Yuan P, Yang D 2020 Int. J. Heat Mass Transfer 151 119395Google Scholar

    [31]

    Liu Q, Luo H, Wang L, Shen S 2017 J. Phys. D-Appl. Phys. 50 065108Google Scholar

    [32]

    Ma Y L, Zhang Z W, Chen J G, Saaskilahti K, Volz S, Chen J 2018 Carbon 135 263Google Scholar

    [33]

    Sääskilahti K, Oksanen J, Tulkki J, Volz S 2014 Phys. Rev. B 90 134312Google Scholar

    [34]

    Sääskilahti K, Oksanen J, Tulkki J, Volz S 2016 Phys. Rev. E 93 052141Google Scholar

    [35]

    Hu S Q, Zhang Z W, Jiang P F, Ren W J, Yu C Q, Shiomi J, Chen J 2019 Nanoscale 11 11839Google Scholar

    [36]

    Hu S Q, Zhang Z W, Jiang P F, Chen J, Volz S, Nomura M, Li B W 2018 J. Phys. Chem. Lett. 9 3959Google Scholar

    [37]

    Zhang Z W, Hu S Q, Nakayama T, Chen J, Li B W 2018 Carbon 139 289Google Scholar

计量
  • 文章访问数:  6686
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-30
  • 修回日期:  2021-01-23
  • 上网日期:  2021-05-21
  • 刊出日期:  2021-06-05

/

返回文章
返回