[1] |
Zhang Da-Jun. Bilinearization-reduction approach to integrable systems. Acta Physica Sinica,
2023, 72(10): 100203.
doi: 10.7498/aps.72.20230063
|
[2] |
Zhang Da-Jun. Discrete integrable systems: Multidimensional consistency. Acta Physica Sinica,
2020, 69(1): 010202.
doi: 10.7498/aps.69.20191647
|
[3] |
Song Cai-Qin, Zhu Zuo-Nong. An integrable reverse space-time nonlocal Sasa-Satsuma equation. Acta Physica Sinica,
2020, 69(1): 010204.
doi: 10.7498/aps.69.20191887
|
[4] |
Wei Han-Yu, Xia Tie-Cheng. Nonlinear integrable couplings of super Kaup-Newell hierarchy and its super Hamiltonian structures. Acta Physica Sinica,
2013, 62(12): 120202.
doi: 10.7498/aps.62.120202
|
[5] |
Yin Jiu-Li, Fan Yu-Qin, Zhang Juan, Tian Li-Xin. Some new integrable nonlinear dispersive equations and their solitary wave solutions. Acta Physica Sinica,
2011, 60(8): 080201.
doi: 10.7498/aps.60.080201
|
[6] |
Yu Ya-Xuan, Wang Qi, Zhao Xue-Qin, Zhi Hong-Yan, Zhang Hong-Qing. A direct algebraic method to obtain solitary solutions of nonlinear differential-difference equations. Acta Physica Sinica,
2005, 54(9): 3992-3994.
doi: 10.7498/aps.54.3992
|
[7] |
Tian Xiao-Dong, Yue Rui-Hong. Integrability of the generalized multi-component Fermi quantum derivative nonlin ear Schrdinger model. Acta Physica Sinica,
2005, 54(4): 1485-1489.
doi: 10.7498/aps.54.1485
|
[8] |
Pu Li-Chun, Zhang Xue-Feng, Xu Li-Jun. Exact solution of the nonlinear “loop” soliton equation. Acta Physica Sinica,
2005, 54(9): 4186-4191.
doi: 10.7498/aps.54.4186
|
[9] |
Li Qi-Liang, Zhu Hai-Dong, Tang Xiang-Hong, Li Cheng-Jia, Wang Xiao-Jun, Lin Li-Bin. Integrability aspects of solitons’ coupled equation in multi-wavelength system. Acta Physica Sinica,
2004, 53(6): 1623-1628.
doi: 10.7498/aps.53.1623
|
[10] |
Zhang Yu-Feng, Guo Fu-Kui. An extension of Lie algebra and a related integrable system. Acta Physica Sinica,
2004, 53(5): 1276-1279.
doi: 10.7498/aps.53.1276
|
[11] |
Cai Hao, Chen Shi-Rong, Huang Nian-Ning. General procedure to formulate Hamiltonian theory of the completely integrable n onlinear equations and its application to the sine-Gordon equation. Acta Physica Sinica,
2003, 52(9): 2206-2212.
doi: 10.7498/aps.52.2206
|
[12] |
Zhang Yu-Feng, Yan Qing-You. A type of expanding integrable system for NLS-mKdV hierarchy. Acta Physica Sinica,
2003, 52(9): 2109-2113.
doi: 10.7498/aps.52.2109
|
[13] |
Zhang Yu-Feng, Yan Qing-You, Zhang Hong-Qing. A family of S-mKdV hierarchy of equations and its expanding integrable models. Acta Physica Sinica,
2003, 52(1): 5-11.
doi: 10.7498/aps.52.5
|
[14] |
Ruan Hang-Yu, Chen Yi-Xin. HIGHER DIMENSIONAL PAINLEVé INTEGRABLE MODELSWITH REAL PHYSICAL SIGNIFICATION. Acta Physica Sinica,
2001, 50(4): 577-585.
doi: 10.7498/aps.50.577
|
[15] |
RUAN HANG-YU. STUDY OF SOLITONS INTERACTION IN INTEGRABLE MODELS. Acta Physica Sinica,
2001, 50(3): 369-376.
doi: 10.7498/aps.50.369
|
[16] |
Lin Ji, Wang Ke-Lin. . Acta Physica Sinica,
2001, 50(1): 13-20.
doi: 10.7498/aps.50.13
|
[17] |
YAN ZHEN-YA, ZHANG HONG-QING. NEW LAX INTEGRABLE HIERARCHY OF EVOLUTION EQUATIONS AND ITS INFINITE-DIMENSIONAL BI-HAMILTONIAN STRUCTURE. Acta Physica Sinica,
2001, 50(7): 1232-1236.
doi: 10.7498/aps.50.1232
|
[18] |
MA TAO, NI ZHI-XIANG. TWO NEW CLASSES OF CONDITIONALLY EXACTLY SOLVABLE POTENTIAL AND THEIR NONLINEAR SPECTRUM-GENERATING ALGEBRAS. Acta Physica Sinica,
1999, 48(6): 987-991.
doi: 10.7498/aps.48.987
|
[19] |
LIN JI, YU JUN, LOU SEN-YUE. (3+1)-DIMENSIONAL MODELS WITH INFINITELY DIMENSIONAL VIRASORO TYPE SYMMETRY ALGBRA. Acta Physica Sinica,
1996, 45(7): 1073-1080.
doi: 10.7498/aps.45.1073
|
[20] |
HAN PING, LOU SEN-YUE. SYMMETRY ALGEBRA OF THE KAUP-KUPERSHMIDT EQUATION. Acta Physica Sinica,
1994, 43(7): 1041-1049.
doi: 10.7498/aps.43.1041
|