[1] |
Sun Xian-Ting, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun. Form invariance and Mei conserved quantity for generalized Hamilton systems after adding additional terms. Acta Physica Sinica,
2015, 64(6): 064502.
doi: 10.7498/aps.64.064502
|
[2] |
Sun Xian-Ting, Zhang Yao-Yu, Zhang Fang, Jia Li-Qun. Conformal invariance and Hojman conserved quantity of Lie symmetry for Appell equations in a holonomic system. Acta Physica Sinica,
2014, 63(14): 140201.
doi: 10.7498/aps.63.140201
|
[3] |
Han Yue-Lin, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun. A type of the new exact and approximate conserved quantity deduced from Mei symmetry for a weakly nonholonomic system. Acta Physica Sinica,
2013, 62(11): 110201.
doi: 10.7498/aps.62.110201
|
[4] |
Sun Xian-Ting, Han Yue-Lin, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun. A type of new conserved quantity of Mei symmetry for Appell equations in a holonomic system. Acta Physica Sinica,
2012, 61(20): 200204.
doi: 10.7498/aps.61.200204
|
[5] |
Luo Shao-Kai, Jia Li-Qun, Xie Yin-Li. Mei conserved quantity deduced from Mei symmetry of Appell equation in a dynamical system of relative motion. Acta Physica Sinica,
2011, 60(4): 040201.
doi: 10.7498/aps.60.040201
|
[6] |
Xie Yin-Li, Jia Li-Qun, Yang Xin-Fang. Lie symmetry and Hojman conserved quantity of Nielsen equation in a dynamical system of the relative motion. Acta Physica Sinica,
2011, 60(3): 030201.
doi: 10.7498/aps.60.030201
|
[7] |
Jiang Wen-An, Luo Shao-Kai. Mei symmetry leading to Mei conserved quantity of generalized Hamiltonian system. Acta Physica Sinica,
2011, 60(6): 060201.
doi: 10.7498/aps.60.060201
|
[8] |
Jia Li-Qun, Zhang Yao-Yu, Yang Xin-Fang, Cui Jin-Chao, Xie Yin-Li. Type Ⅲ structural equation and Mei conserved quantity of Mei symmetry for a Lagrangian system. Acta Physica Sinica,
2010, 59(5): 2939-2941.
doi: 10.7498/aps.59.2939
|
[9] |
Cai Jian-Le. Conformal invariance and conserved quantities of Mei symmetry for general holonomic systems. Acta Physica Sinica,
2009, 58(1): 22-27.
doi: 10.7498/aps.58.22
|
[10] |
Ge Wei-Kuan. Mei symmetry and conserved quantity of a holonomic system. Acta Physica Sinica,
2008, 57(11): 6714-6717.
doi: 10.7498/aps.57.6714
|
[11] |
Jia Li-Qun, Luo Shao-Kai, Zhang Yao-Yu. Mei symmetry and Mei conserved quantity of Nielsen equation for a nonholonomic system. Acta Physica Sinica,
2008, 57(4): 2006-2010.
doi: 10.7498/aps.57.2006
|
[12] |
Liu Chang, Liu Shi-Xing, Mei Feng-Xiang, Guo Yong-Xin. Conformal invariance and Hojman conserved quantities of generalized Hamilton systems. Acta Physica Sinica,
2008, 57(11): 6709-6713.
doi: 10.7498/aps.57.6709
|
[13] |
Fang Jian-Hui, Ding Ning, Wang Peng. A new type of conserved quantity of Mei symmetry for Hamilton system. Acta Physica Sinica,
2007, 56(6): 3039-3042.
doi: 10.7498/aps.56.3039
|
[14] |
Zheng Shi-Wang, Jia Li-Qun. Mei symmetry and conserved quantity of Tzénoff equations for nonholonomic systems. Acta Physica Sinica,
2007, 56(2): 661-665.
doi: 10.7498/aps.56.661
|
[15] |
Jia Li-Qun, Zheng Shi-Wang, Zhang Yao-Yu. Mei symmetry and Mei conserved quantity of nonholonomic systems of non-Chetaev’s type in event space. Acta Physica Sinica,
2007, 56(10): 5575-5579.
doi: 10.7498/aps.56.5575
|
[16] |
Fang Jian-Hui, Liao Yong-Pan, Peng Yong. Tow kinds of Mei symmeties and conserved quantities of a mechanical system in phase space. Acta Physica Sinica,
2005, 54(2): 500-503.
doi: 10.7498/aps.54.500
|
[17] |
Zhang Yi, Ge Wei-Kuan. A new conservation law from Mei symmetry for the relativistic mechanical system. Acta Physica Sinica,
2005, 54(4): 1464-1467.
doi: 10.7498/aps.54.1464
|
[18] |
Zhang Yi. Symmetries and Mei conserved quantities for systems of generalized classical mechanics. Acta Physica Sinica,
2005, 54(7): 2980-2984.
doi: 10.7498/aps.54.2980
|
[19] |
Luo Shao-Kai, Guo Yong-Xin, Mei Feng-Xiang. Noether symmetry and Hojman conserved quantity for nonholonomic mechanical systems. Acta Physica Sinica,
2004, 53(5): 1270-1275.
doi: 10.7498/aps.53.1270
|
[20] |
Mei Feng-Xiang. Lie symmetry and the conserved quantity of a generalized Hamiltonian system. Acta Physica Sinica,
2003, 52(5): 1048-1050.
doi: 10.7498/aps.52.1048
|