[1] |
Li Yan-Min, Chen Xiang-Wei, Wu Hui-Bin, Mei Feng-Xiang. Two kinds of generalized gradient representations for generalized Birkhoff system. Acta Physica Sinica,
2016, 65(8): 080201.
doi: 10.7498/aps.65.080201
|
[2] |
Mei Feng-Xiang, Wu Hui-Bin. Generalized Birkhoff system and a kind of combined gradient system. Acta Physica Sinica,
2015, 64(18): 184501.
doi: 10.7498/aps.64.184501
|
[3] |
Zhou Jian-Mei, Zhang Ye, Wang Hong-Nian, Yang Shou-Wen, Yin Chang-Chun. Efficient simulation of three-dimensional marine controlled-source electromagnetic response in anisotropic formation by means of coupled potential finite volume method. Acta Physica Sinica,
2014, 63(15): 159101.
doi: 10.7498/aps.63.159101
|
[4] |
Ge Wei-Kuan, Zhang Yi, Lou Zhi-Mei. Infinitesimal canonical transformation and integral for a generalized Birkhoff system. Acta Physica Sinica,
2012, 61(14): 140204.
doi: 10.7498/aps.61.140204
|
[5] |
Zhang Yi, Ge Wei-Kuan. An integral of a generalized Birkhoff system. Acta Physica Sinica,
2011, 60(5): 050202.
doi: 10.7498/aps.60.050202
|
[6] |
Li Guang-Cheng, Chen Lei-Ming, Wang Dong-Xiao, Wu Da-Yong. Manifold stability of equilibrium state of autonomous generalized Birkhoff system. Acta Physica Sinica,
2010, 59(5): 2932-2934.
doi: 10.7498/aps.59.2932
|
[7] |
Li Yan-Min, Mei Feng-Xiang. Integral methods for the generalized Birkhoff equations. Acta Physica Sinica,
2010, 59(9): 5930-5933.
doi: 10.7498/aps.59.5930
|
[8] |
Wang Chuan-Dong, Liu Shi-Xing, Mei Feng-Xiang. Generalized Pfaff-Birkhoff-d’Alembert principle and form invariance of generalized Birkhoff’s equations. Acta Physica Sinica,
2010, 59(12): 8322-8325.
doi: 10.7498/aps.59.8322
|
[9] |
Li Yan-Min, Mei Feng-Xiang. Generalized canonical transformations of a kind of generalized Birkhoff systems. Acta Physica Sinica,
2010, 59(8): 5219-5222.
doi: 10.7498/aps.59.5219
|
[10] |
Ge Wei-Kuan, Mei Feng-Xiang. Time-integral theorems for generalized Birkhoff system. Acta Physica Sinica,
2009, 58(2): 699-702.
doi: 10.7498/aps.58.699
|
[11] |
Zhang Yi. Birkhoff symmetries and conserved quantities of generalized Birkhoffian systems. Acta Physica Sinica,
2009, 58(11): 7436-7439.
doi: 10.7498/aps.58.7436
|
[12] |
Meng Zong, Liu Bin. Stability of equilibrium state of a kind of nonlinear relative rotation dynamic system and associated harmonic approximate solution. Acta Physica Sinica,
2008, 57(3): 1329-1334.
doi: 10.7498/aps.57.1329
|
[13] |
Mei Feng-Xiang, Xie Jia-Fang, Gang Tie-Qiang. An inverse problem of dynamics of a generalized Birkhoff system. Acta Physica Sinica,
2008, 57(8): 4649-4651.
doi: 10.7498/aps.57.4649
|
[14] |
Zhao Wu, Liu Bin, Shi Pei-Ming, Jiang Jin-Shui. Analysis of stability of the equilibrium state of periodic motion in a nonlinear relative-rotation system. Acta Physica Sinica,
2006, 55(8): 3852-3857.
doi: 10.7498/aps.55.3852
|
[15] |
Fu Jing-Li, Chen Li-Qun, Xue Yun. Stability for the equilibrium state of rotational relativistic Birkhoffian systems. Acta Physica Sinica,
2003, 52(2): 256-261.
doi: 10.7498/aps.52.256
|
[16] |
Fu Jing-Li, Chen Li-Qun, Xue Yun, Luo Shao-Kai. Stability of the equilibrium state in relativistic Birkhoff systems*. Acta Physica Sinica,
2002, 51(12): 2683-2689.
doi: 10.7498/aps.51.2683
|
[17] |
YANG SHI-XIN, LI FANG-HUA, LIU YU-DONG, GU YUAN-XIN, FAN HAI-FU. APPLICATION OF DIRECT METHOD TO ELECTRON CRYSTALLOGRAPHIC IMAGE PROCESSING FOR T WO-DIMENSIONAL PROTEIN CRYSTALS. Acta Physica Sinica,
2000, 49(10): 1982-1987.
doi: 10.7498/aps.49.1982
|
[18] |
Zheng Qi-tai. THE TRIAL AND ERROR PROCEDURES IN THE DIRECT METHOD (Ⅱ). Acta Physica Sinica,
1986, 35(9): 1134-1141.
doi: 10.7498/aps.35.1134
|
[19] |
ZHENG QI-TAI. THE TRIAL AND ERROR PROCEDURES IN THE DIRECT METHOD (Ⅰ). Acta Physica Sinica,
1985, 34(10): 1280-1290.
doi: 10.7498/aps.34.1280
|
[20] |
FAN HAI-FU, ZHENG QI-TAI. THE PROBLEM OF AMBIGUITY IN PATTERSON ANALYSIS TREATED BY DIRECT METHOD. Acta Physica Sinica,
1978, 27(2): 169-174.
doi: 10.7498/aps.27.169
|