Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Two kinds of generalized gradient representations for generalized Birkhoff system

Li Yan-Min Chen Xiang-Wei Wu Hui-Bin Mei Feng-Xiang

Citation:

Two kinds of generalized gradient representations for generalized Birkhoff system

Li Yan-Min, Chen Xiang-Wei, Wu Hui-Bin, Mei Feng-Xiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Brikhoff system is a kind of basic dynamical system. The theory and method of Brikhoff system dynamics have been applied to the hadron physics, quantum physics, relativity and rotational relativistic system. The properties of gradient system not only play an important role in revealing the internal structure of dynamical system, but also help to explore the dynamical behavior of the system. In this paper, two kinds of generalized gradient representations for generalized Birkhoff system are studied. First, two kinds of generalized gradient systems, i. e., the generalized skew gradient system and the generalized gradient system with symmetric negative definite matrix, are proposed and the characteristics of the systems are studied. Second, the relations of stability between these two kinds of gradient system and the dynamical system are discussed. Third, the condition under which a generalized Birkhoff system can be considered as one of the two generalized gradient systems is obtained. Fourth, the gradient discrimination method of stability of the generalized Brikhoff system is given, and the characteristics of the generalized gradient systems can be used to study the stability of the generalized Birkhoff system. Finally, some examples are given to illustrate the application of the result. Therefore, once the mechanical system is expressed as the generalized gradient system, the stability and the asymptotic stability can be conveniently studied by using the properties of generalized gradient system. The difficulty in constructing Lyapunov functions is avoided, and a convenient method of analyzing the stability of mechanical system is provided.
      Corresponding author: Chen Xiang-Wei, hnchenxw@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10932002, 11372169, 11272050).
    [1]

    Santilli R M 1978 Foundations of Theoretical Mechanics I (New York: Springer) pp182-191

    [2]

    Santilli R M 1983 Foundations of Theoretical Mechanics II (New York: Springer) pp253-267

    [3]

    Hirsch M W, Smale S 1974 Differential Equations, Dynamical Systems, and Linear Algebra (New York: Academic Press) pp199-203

    [4]

    Mc Lachlan R I, Quispel G R W, Robidoux N 1999 Phil. Trans. R. Soc. Lond. A 357 1021

    [5]

    Mei F X, Wu H B 2012 J. Dynam. Control 10 289 (in Chinese) [梅凤翔, 吴惠彬 2012 动力学与控制学报 10 289]

    [6]

    Lou Z M, Mei F X 2012 Acta Phys. Sin. 61 024502 (in Chinese) [楼智美, 梅凤翔 2012 物理学报 61 024502]

    [7]

    Hirsch M W, Smale S, Devaney R L 2008 Differential Equations, Dynamical Systems, and an Introduction to Chaos (Singapore: Elsevier) pp203-206

    [8]

    Mei F X, Cui J C, Wu H B 2012 Trans. Beijing Inst. Tech. 32 1298 (in Chinese) [梅凤翔, 崔金超, 吴惠彬 2012 北京理工大学学报 32 1298]

    [9]

    Tom B, Ralph C, Eva F 2012 Monatsh Math. 166 57

    [10]

    Mei F X, Wu H B 2013 Sci. Sin.: Phys. Mech. Astron. 43 538 (in Chinese) [梅凤翔, 吴惠彬 2013 中国科学: 物理学 力学 天文学 43 538]

    [11]

    Chen X W, Zhao G L, Mei F X 2013 Nonlinear Dyn. 73 579

    [12]

    Mei F X 2013 Analytical Mechanics II (Beijing: Beijing Inst. Tech. Press) pp564-581 (in Chinese) [梅凤翔 2013 分析力学II(北京: 北京理工大学出版社) 第 564-581 页]

    [13]

    Marin A M, Ortiz R D, Rodriguez J A 2013 International Mathematical Forum 8 803

    [14]

    Mei F X, Wu H B 2015 J. Dynam. Control 13 329 (in Chinese) [梅凤翔, 吴惠彬 2015 动力学与控制学报 13 329]

    [15]

    Yin X W, Li D S 2015 Acta Mathematica Scientia 35A 464 (in Chinese) [尹逊武, 李德生 2015 数学物理学报 35A 464]

    [16]

    Mei F X, Wu H B 2015 Chin. Phys. B 24 104502

    [17]

    Wu H B, Mei F X 2015 Acta Phys. Sin. 64 234501 (in Chinese) [吴惠彬, 梅凤翔 2015 物理学报 64 234501]

    [18]

    Zhang Y 2015 J. Suzhou Univ. Sci. Tech. (Natural Science) 32 1 (in Chinese) [张毅 2015 苏州科技学院学报(自然科学版) 32 1]

    [19]

    Mei F X, Wu H B 2015 Acta Phys. Sin. 64 184501 (in Chinese) [梅凤翔, 吴惠彬 2015 物理学报 64 184501]

    [20]

    Li L, Luo S K 2013 Acta Mechanica 224 1757

    [21]

    Luo S K, He J M, Xu Y L 2016 Inter. J. Non-Linear Mech. 78 105

    [22]

    Mei F X 2013 Dynamics of Generalized Birkhoff Systems (Beijing: Science Press) pp31-36 (in Chinese) [梅凤翔 2013 广义Birkhoff系统动力学 (北京: 科学出版社) 第 31-36 页]

  • [1]

    Santilli R M 1978 Foundations of Theoretical Mechanics I (New York: Springer) pp182-191

    [2]

    Santilli R M 1983 Foundations of Theoretical Mechanics II (New York: Springer) pp253-267

    [3]

    Hirsch M W, Smale S 1974 Differential Equations, Dynamical Systems, and Linear Algebra (New York: Academic Press) pp199-203

    [4]

    Mc Lachlan R I, Quispel G R W, Robidoux N 1999 Phil. Trans. R. Soc. Lond. A 357 1021

    [5]

    Mei F X, Wu H B 2012 J. Dynam. Control 10 289 (in Chinese) [梅凤翔, 吴惠彬 2012 动力学与控制学报 10 289]

    [6]

    Lou Z M, Mei F X 2012 Acta Phys. Sin. 61 024502 (in Chinese) [楼智美, 梅凤翔 2012 物理学报 61 024502]

    [7]

    Hirsch M W, Smale S, Devaney R L 2008 Differential Equations, Dynamical Systems, and an Introduction to Chaos (Singapore: Elsevier) pp203-206

    [8]

    Mei F X, Cui J C, Wu H B 2012 Trans. Beijing Inst. Tech. 32 1298 (in Chinese) [梅凤翔, 崔金超, 吴惠彬 2012 北京理工大学学报 32 1298]

    [9]

    Tom B, Ralph C, Eva F 2012 Monatsh Math. 166 57

    [10]

    Mei F X, Wu H B 2013 Sci. Sin.: Phys. Mech. Astron. 43 538 (in Chinese) [梅凤翔, 吴惠彬 2013 中国科学: 物理学 力学 天文学 43 538]

    [11]

    Chen X W, Zhao G L, Mei F X 2013 Nonlinear Dyn. 73 579

    [12]

    Mei F X 2013 Analytical Mechanics II (Beijing: Beijing Inst. Tech. Press) pp564-581 (in Chinese) [梅凤翔 2013 分析力学II(北京: 北京理工大学出版社) 第 564-581 页]

    [13]

    Marin A M, Ortiz R D, Rodriguez J A 2013 International Mathematical Forum 8 803

    [14]

    Mei F X, Wu H B 2015 J. Dynam. Control 13 329 (in Chinese) [梅凤翔, 吴惠彬 2015 动力学与控制学报 13 329]

    [15]

    Yin X W, Li D S 2015 Acta Mathematica Scientia 35A 464 (in Chinese) [尹逊武, 李德生 2015 数学物理学报 35A 464]

    [16]

    Mei F X, Wu H B 2015 Chin. Phys. B 24 104502

    [17]

    Wu H B, Mei F X 2015 Acta Phys. Sin. 64 234501 (in Chinese) [吴惠彬, 梅凤翔 2015 物理学报 64 234501]

    [18]

    Zhang Y 2015 J. Suzhou Univ. Sci. Tech. (Natural Science) 32 1 (in Chinese) [张毅 2015 苏州科技学院学报(自然科学版) 32 1]

    [19]

    Mei F X, Wu H B 2015 Acta Phys. Sin. 64 184501 (in Chinese) [梅凤翔, 吴惠彬 2015 物理学报 64 184501]

    [20]

    Li L, Luo S K 2013 Acta Mechanica 224 1757

    [21]

    Luo S K, He J M, Xu Y L 2016 Inter. J. Non-Linear Mech. 78 105

    [22]

    Mei F X 2013 Dynamics of Generalized Birkhoff Systems (Beijing: Science Press) pp31-36 (in Chinese) [梅凤翔 2013 广义Birkhoff系统动力学 (北京: 科学出版社) 第 31-36 页]

  • [1] Wang Hai-Feng, Li Wang, Gu Guo-Biao, Shen Jun, Teng Qi-Zhi. Static bifurcation analysis of natural circulation inner evaporative cooling system in wind turbine. Acta Physica Sinica, 2016, 65(3): 030501. doi: 10.7498/aps.65.030501
    [2] Mei Feng-Xiang, Wu Hui-Bin. Generalized Birkhoff system and a kind of combined gradient system. Acta Physica Sinica, 2015, 64(18): 184501. doi: 10.7498/aps.64.184501
    [3] Ge Wei-Kuan, Xue Yun, Lou Zhi-Mei. Generalized gradient representation of holonomic mechanical systems. Acta Physica Sinica, 2014, 63(11): 110202. doi: 10.7498/aps.63.110202
    [4] Ge Wei-Kuan, Zhang Yi, Lou Zhi-Mei. Infinitesimal canonical transformation and integral for a generalized Birkhoff system. Acta Physica Sinica, 2012, 61(14): 140204. doi: 10.7498/aps.61.140204
    [5] Huang Li-Lian, He Shao-Jie. Stability of fractional state space system and its application to fractional order chaotic system. Acta Physica Sinica, 2011, 60(4): 044703. doi: 10.7498/aps.60.044703
    [6] Sun Yue, Dai Xin, Wang Zhi-Hui, Su Yu-Gang, Hu Ai-Guo, Tang Chun-Sen. Analysis of multiple resonant operating points and their autonomous oscillation stabilities in inductive power transfer systems. Acta Physica Sinica, 2011, 60(4): 048401. doi: 10.7498/aps.60.048401
    [7] Chen Hai-Jun, Li Gao-Qing, Xue Ju-Kui. Variational-method analysis of stability of Bose-Fermi mixture. Acta Physica Sinica, 2011, 60(4): 040304. doi: 10.7498/aps.60.040304.1
    [8] Liu Hao-Ran, Zhu Zhan-Long, Shi Pei-Ming. Stability analysis of a relative rotation time-delay nonlinear dynamic system. Acta Physica Sinica, 2010, 59(10): 6770-6777. doi: 10.7498/aps.59.6770
    [9] Liu Shuang, Liu Bin, Zhang Ye-Kuan, Wen Yan. Hopf bifurcation and stability of periodic solutions in a nonlinear relative rotation dynamical system with time delay. Acta Physica Sinica, 2010, 59(1): 38-43. doi: 10.7498/aps.59.38
    [10] He Xue-Jun, Zhang Liang-Xin, Ren Ai-Di. The study of stability and bifurcation of highline cable of alongside replenishment system. Acta Physica Sinica, 2010, 59(5): 3088-3092. doi: 10.7498/aps.59.3088
    [11] Li Yan-Min, Mei Feng-Xiang. Integral methods for the generalized Birkhoff equations. Acta Physica Sinica, 2010, 59(9): 5930-5933. doi: 10.7498/aps.59.5930
    [12] Li Yan-Min, Mei Feng-Xiang. Generalized canonical transformations of a kind of generalized Birkhoff systems. Acta Physica Sinica, 2010, 59(8): 5219-5222. doi: 10.7498/aps.59.5219
    [13] Wang Chuan-Dong, Liu Shi-Xing, Mei Feng-Xiang. Generalized Pfaff-Birkhoff-d’Alembert principle and form invariance of generalized Birkhoff’s equations. Acta Physica Sinica, 2010, 59(12): 8322-8325. doi: 10.7498/aps.59.8322
    [14] Zhang Yi. Stability of equilibrium for the autonomous generalized Birkhoffian system. Acta Physica Sinica, 2010, 59(1): 20-24. doi: 10.7498/aps.59.20
    [15] Shi Pei-Ming, Jiang Jin-Shui, Liu Bin. Stability and approximate solution of a relative-rotation nonlinear dynamical system with coupled terms. Acta Physica Sinica, 2009, 58(4): 2147-2154. doi: 10.7498/aps.58.2147
    [16] Ge Wei-Kuan, Mei Feng-Xiang. Time-integral theorems for generalized Birkhoff system. Acta Physica Sinica, 2009, 58(2): 699-702. doi: 10.7498/aps.58.699
    [17] Zhang Yi. Birkhoff symmetries and conserved quantities of generalized Birkhoffian systems. Acta Physica Sinica, 2009, 58(11): 7436-7439. doi: 10.7498/aps.58.7436
    [18] Mei Feng-Xiang, Xie Jia-Fang, Gang Tie-Qiang. An inverse problem of dynamics of a generalized Birkhoff system. Acta Physica Sinica, 2008, 57(8): 4649-4651. doi: 10.7498/aps.57.4649
    [19] Shi Pei-Ming, Liu Bin, Liu Shuang. Stability and approximate solution of a relative-rotation nonlinear dynamical system under harmonic excitation. Acta Physica Sinica, 2008, 57(8): 4675-4684. doi: 10.7498/aps.57.4675
    [20] Zhang Kai, Feng Jun. Symmetry and stability of a relativistic birkhoff system. Acta Physica Sinica, 2005, 54(7): 2985-2989. doi: 10.7498/aps.54.2985
Metrics
  • Abstract views:  6543
  • PDF Downloads:  389
  • Cited By: 0
Publishing process
  • Received Date:  11 December 2015
  • Accepted Date:  06 January 2016
  • Published Online:  05 April 2016

/

返回文章
返回