-
The transport dynamics of the ablated particles is simulated via Monte Carlo simulation. The influences of ambient gases (He, Ne, and Ar dummy gas) on velocity splitting of the ablated particles under 100 Pa are investigated. The results show that the velocity splitting appears in four types of gases. The formation times of velocity splitting of the ablated particles decrease in sequence of He, Ne, dummy gas and Ar. The influences of the mass and radius of ambient gas molecule on the velocity splitting are also investigated. The formation time of the velocity splitting decreases with mass/radius of ambient gas molecule increasing. The intensity is the smallest when the two velocity peak intensities are equal. The formation time of velocity splitting is explained by the underdamping oscillation model and the inertia fluid model. These results give a good foundation for the further study of the Si nanoparticle growth.
-
Keywords:
- Monte Carlo simulation /
- ablated particles /
- velocity splitting /
- gas kinds
[1] Lownds D H, Geohegan D B, Puretzky A A, Norton D P, Rouleau C M 1996 Science 273 898
[2] Phark S H, Chang Y J, Noh T W 2009 Phys. Rev. B 80 035426
[3] Wang Y L, Chen C, Ding X C, Chu L Z, Deng Z C, Liang W H, Fu G S 2011 Laser Part. Beams 29 105
[4] Zhao S Q, Yang L M, Liu W W, Zhao K, Zhou Y L, Zhou Q L 2010 Chin. Phys. B 19 087204
[5] Ding X C, Fu G S, Liang W H, Chu L Z, Deng Z C, Wang Y L 2010 Acta Phys. Sin. 59 3331 (in Chines) [丁学成, 傅广生, 梁伟华, 褚立志, 邓泽超, 王英龙 2010 物理学报 59 3331]
[6] Gareth O W, Sebastian F, Gerard O 2009 Appl. Phys. Lett. 94 101503
[7] Harilal S S, Shay B O, Tao Y, Tillack M S 2006 J. Appl. Phys. 99 083303
[8] Wood R F, Chen K R, Leboeuf J N, Puretzky A A, Geohegan D B 1997 Phys. Rew. Lett. 79 1571
[9] Ding X C, Wang Y L, Chu L Z, Deng Z C, Liang W H, Galalaldeen I I A, Fu G S 2011 Europhys. Lett. 96 55002
[10] Leonid V Z, Barbara J G 1997 Appl. Phys. Lett. 71 551
[11] Han M, Gong Y C, Zhou J F, Yin C R, Song F Q, Muto N, Takiya T, Iwata Y 2002 Phys. Lett. A 302 182
[12] Yoshida T, Takeyama S, Yshida Y, Katsuhika M 1996 Appl. Phys. Lett. 68 1772
[13] Fu G S, Wang Y L, Chu L Z, Zhou Y, Yu W, Han L, Peng Y C 2005 Europhys. Lett. 69 758
-
[1] Lownds D H, Geohegan D B, Puretzky A A, Norton D P, Rouleau C M 1996 Science 273 898
[2] Phark S H, Chang Y J, Noh T W 2009 Phys. Rev. B 80 035426
[3] Wang Y L, Chen C, Ding X C, Chu L Z, Deng Z C, Liang W H, Fu G S 2011 Laser Part. Beams 29 105
[4] Zhao S Q, Yang L M, Liu W W, Zhao K, Zhou Y L, Zhou Q L 2010 Chin. Phys. B 19 087204
[5] Ding X C, Fu G S, Liang W H, Chu L Z, Deng Z C, Wang Y L 2010 Acta Phys. Sin. 59 3331 (in Chines) [丁学成, 傅广生, 梁伟华, 褚立志, 邓泽超, 王英龙 2010 物理学报 59 3331]
[6] Gareth O W, Sebastian F, Gerard O 2009 Appl. Phys. Lett. 94 101503
[7] Harilal S S, Shay B O, Tao Y, Tillack M S 2006 J. Appl. Phys. 99 083303
[8] Wood R F, Chen K R, Leboeuf J N, Puretzky A A, Geohegan D B 1997 Phys. Rew. Lett. 79 1571
[9] Ding X C, Wang Y L, Chu L Z, Deng Z C, Liang W H, Galalaldeen I I A, Fu G S 2011 Europhys. Lett. 96 55002
[10] Leonid V Z, Barbara J G 1997 Appl. Phys. Lett. 71 551
[11] Han M, Gong Y C, Zhou J F, Yin C R, Song F Q, Muto N, Takiya T, Iwata Y 2002 Phys. Lett. A 302 182
[12] Yoshida T, Takeyama S, Yshida Y, Katsuhika M 1996 Appl. Phys. Lett. 68 1772
[13] Fu G S, Wang Y L, Chu L Z, Zhou Y, Yu W, Han L, Peng Y C 2005 Europhys. Lett. 69 758
Catalog
Metrics
- Abstract views: 6437
- PDF Downloads: 376
- Cited By: 0