-
Silver nanoparticles are synthesized through thermal evaporation for molecular detection using surface enhanced Raman scattering microscopy. The optical properties of silver nanoparticles are obtained by ultraviolet-visible spectrometry, which show the resonance wavelength near the detecting wavelength of Raman scattering (488 nm). Using rhodamine 6G as a test molecule, the results in this paper show that the detected Raman peak intensity has a nonlinear relationship with the incident power density when surface plasmon of silver nanoparticles was excitated by incident photon. This nonlinear phenomenon of surface enhanced Raman scattering caused by "hot spot" with high electromagnetic field strength provides an effective way to obtain high scattering intensity without high incident power density, which may expand the scope of Raman scattering application.
-
Keywords:
- silver nano-structures /
- surface plasmon /
- surface enhanced Raman scattering /
- nonlinear phenomena
[1] Xie C G, Dinno M A, Li Y Q 2002 Optics Letters 27 249
[2] Ramser K, Bjerneld E J, Fant C, Käll M 2003 Journal of Biomedical Optics 8 173
[3] Fang J X, Yi Y, Ding B J, Song X P 2008 Appl. Phys. Lett. 92 131115
[4] Sajan D, Hubert Joe I, Jayakumar V S 2006 J. Raman Spectrosc 37 508
[5] Michaels A M, Jiang J, Brus L E 2000 J. Phys. Chem. B 104 11965
[6] Haslett T L, Tay L, Moskovits M 2000 J. Chem. Phys. 113 1641
[7] Huang Q, Zhang X D, Wang S, Cao L R, Sun J, Geng W D, Xiong S Z, Zhao Y 2009 Acta Phys. Sin. 58 2731 (in Chinese) [黄茜, 张晓丹, 王烁, 曹丽冉, 孙建, 耿卫东, 熊绍珍, 赵颖 2009 物理学报 58 2731]
[8] Weimer W A, Dyer M J 2001 Appl. Phys. Lett. 79 3164
[9] Meier M, Wokaum A, Vo-Dinh T 1985 J. Phys. Chem. 89 1843
[10] Hong X, Du D D, Qiu Z R, Zhang G X 2007 Acta Phys. Sin. 56 7219 (in Chinese) [洪昕, 杜丹丹, 裘祖荣, 张国雄 2007 物理学报 56 7219]
[11] Su K H, Wei Q H, Zhang X, Mock J J, Smith D R, Schultz S 2003 Nano Lett. 3 1087
[12] Link S, EI-Sayed M A 1999 J. Phys. Chem. B 103 4212
[13] Kelly K L, Coronado E, Zhao L L, Schatz G C 2003 J. Phys. Chem. B 107 668
[14] Huang Q, Zhang X D, Zhang H, Xiong S Z, Geng W D, Geng X H, Zhao Y 2010 Chin. Phys. B 19 047304
[15] Xu H 2004 Appl. Phys. Lett. 85 5980
[16] Prokes S M, Glembocki O J, Rendell R W, Ancona M G 2007 Appl. Phys. Lett. 90 093105
-
[1] Xie C G, Dinno M A, Li Y Q 2002 Optics Letters 27 249
[2] Ramser K, Bjerneld E J, Fant C, Käll M 2003 Journal of Biomedical Optics 8 173
[3] Fang J X, Yi Y, Ding B J, Song X P 2008 Appl. Phys. Lett. 92 131115
[4] Sajan D, Hubert Joe I, Jayakumar V S 2006 J. Raman Spectrosc 37 508
[5] Michaels A M, Jiang J, Brus L E 2000 J. Phys. Chem. B 104 11965
[6] Haslett T L, Tay L, Moskovits M 2000 J. Chem. Phys. 113 1641
[7] Huang Q, Zhang X D, Wang S, Cao L R, Sun J, Geng W D, Xiong S Z, Zhao Y 2009 Acta Phys. Sin. 58 2731 (in Chinese) [黄茜, 张晓丹, 王烁, 曹丽冉, 孙建, 耿卫东, 熊绍珍, 赵颖 2009 物理学报 58 2731]
[8] Weimer W A, Dyer M J 2001 Appl. Phys. Lett. 79 3164
[9] Meier M, Wokaum A, Vo-Dinh T 1985 J. Phys. Chem. 89 1843
[10] Hong X, Du D D, Qiu Z R, Zhang G X 2007 Acta Phys. Sin. 56 7219 (in Chinese) [洪昕, 杜丹丹, 裘祖荣, 张国雄 2007 物理学报 56 7219]
[11] Su K H, Wei Q H, Zhang X, Mock J J, Smith D R, Schultz S 2003 Nano Lett. 3 1087
[12] Link S, EI-Sayed M A 1999 J. Phys. Chem. B 103 4212
[13] Kelly K L, Coronado E, Zhao L L, Schatz G C 2003 J. Phys. Chem. B 107 668
[14] Huang Q, Zhang X D, Zhang H, Xiong S Z, Geng W D, Geng X H, Zhao Y 2010 Chin. Phys. B 19 047304
[15] Xu H 2004 Appl. Phys. Lett. 85 5980
[16] Prokes S M, Glembocki O J, Rendell R W, Ancona M G 2007 Appl. Phys. Lett. 90 093105
Catalog
Metrics
- Abstract views: 7643
- PDF Downloads: 762
- Cited By: 0