-
The phases and magnetic properties of Co77Zr18-xBxMo5 (x=1.0, 1.5, 2.0, 2.5, and 4.0) are studied by X-ray diffraction analysis and magnetic measurements. Proper addition of Ti could improve the magnetic properties of Co-Zr alloy significantly. The largest value of Hc=7.0 kOe (1 Oe =79.5775 A/m) is obtained in the Co77Zr16Mo5B2 melt-spun ribbon. The grain size of Co5Zr phase decreases with the increase of B content, which contributes significantly to the enhancement of exchange-coupling effect. The coercivity values of the Co77Zr18-xMo5Bx (x=1.0, 1.5, 2.0, 2.5) melt-spun ribbons are affected mainly by the grain size of the Co5Zr phase. The coercivity value first increases and then decreases with the decrease of the Co5Zr phase. On the other hand, the coercivity mechanisms of Co77Zr18-xBxMo5 (x=1.0, 1.5, 2.0, 2.5) melt-spun ribbons are found to be of the pinning type.
[1] Ghemawat A M, Foldeaki M, Dunlap R A, O'Handley R C 1989 IEEE Trans. Magn. 25 3312
[2] Sagawa M, Fujimura S, Togawa N, Yamamoto H, Matsuura Y 1984 J. Appl. Phys. 55 2083
[3] Croat J J, Herbst J F, Lee R W, Pinkerton F E 1984 J. Appl. Phys. 55 2078
[4] Kort K D 1996 14th Int. Workshop Rare Earth Magnets and Applications, San Paulo, Brazil, September 1-4, 1996 p47
[5] Rodewald W, Wall B, Katter M, Ystvner K, Steinmetz S 2002 17th Int.Workshop Rare Earth Magnets and Applications, San Paulo, Brazil, August 18-22, 2002 p25
[6] Saito T, Fujita M, Kuji T, Fukuoka K, Syono Y 1998 J. Appl. Phys. 83 6390
[7] Saito T 2002 Appl. Phys. Lett. 82 2305
[8] Chen L Y, Chang H W, Chiu C H, Chang C W 2005 J. Appl. Phys. 97 307
[9] Zhang J B Sun Q W, Wang W Q Su F 2009 J. Alloys Compd. 474 48
[10] Saito T 2004 IEEE Trans. Magn. 40 2919
[11] Zhang M Y, Zhang J B, Wu C J, Wang W Q, Su F 2010 Physica B 405 1725
[12] Friedel J 1958 Metallic Alloys 7 287
[13] Stroink G, Stadnik Z M, Viau G, Dunlap R A 1990 J. Appl. Phys. 67 4963
[14] Kelly E, O'flGrady K, Mayo P I, Cantrell R W 1989 IEEE Trans. Magn 25 388
[15] Lian L X, Liu Y, Gao S J, Tu M J 2003 J. Chin. Rare Earth Soc. 4 121
[16] Wohlfarth E P 1958 J. Appl. Phys. 29 595
-
[1] Ghemawat A M, Foldeaki M, Dunlap R A, O'Handley R C 1989 IEEE Trans. Magn. 25 3312
[2] Sagawa M, Fujimura S, Togawa N, Yamamoto H, Matsuura Y 1984 J. Appl. Phys. 55 2083
[3] Croat J J, Herbst J F, Lee R W, Pinkerton F E 1984 J. Appl. Phys. 55 2078
[4] Kort K D 1996 14th Int. Workshop Rare Earth Magnets and Applications, San Paulo, Brazil, September 1-4, 1996 p47
[5] Rodewald W, Wall B, Katter M, Ystvner K, Steinmetz S 2002 17th Int.Workshop Rare Earth Magnets and Applications, San Paulo, Brazil, August 18-22, 2002 p25
[6] Saito T, Fujita M, Kuji T, Fukuoka K, Syono Y 1998 J. Appl. Phys. 83 6390
[7] Saito T 2002 Appl. Phys. Lett. 82 2305
[8] Chen L Y, Chang H W, Chiu C H, Chang C W 2005 J. Appl. Phys. 97 307
[9] Zhang J B Sun Q W, Wang W Q Su F 2009 J. Alloys Compd. 474 48
[10] Saito T 2004 IEEE Trans. Magn. 40 2919
[11] Zhang M Y, Zhang J B, Wu C J, Wang W Q, Su F 2010 Physica B 405 1725
[12] Friedel J 1958 Metallic Alloys 7 287
[13] Stroink G, Stadnik Z M, Viau G, Dunlap R A 1990 J. Appl. Phys. 67 4963
[14] Kelly E, O'flGrady K, Mayo P I, Cantrell R W 1989 IEEE Trans. Magn 25 388
[15] Lian L X, Liu Y, Gao S J, Tu M J 2003 J. Chin. Rare Earth Soc. 4 121
[16] Wohlfarth E P 1958 J. Appl. Phys. 29 595
Catalog
Metrics
- Abstract views: 6823
- PDF Downloads: 352
- Cited By: 0