-
With the fast development of nanotechnology, the solid-liquid interfacial thermal resistance draws increasing research interest due to its importance in nanoscale energy transport. The contact angle is an important quantity characterizing the interfacial properties and is easy to be measured experimentally. Previous researchers have tried to correlate the contact angle to the interfacial thermal resistance. Using molecular dynamics simulation, we have calculated the contact angle and interfacial thermal resistance at a solid/liquid interface and discuss the relationship between the two quantities. The solid/liquid bonding strength and the solid properties are varied to test their effects on both contact angle and interfacial thermal resistance. The simulation results demonstrate that with increasing solid/liquid bonding strength, both the contact angle and interfacial thermal resistance decrease. However, the bonding strength between solid atoms and the solid atomic mass influence the interfacial resistance remarkably while they have little effect on the contact angle. It is because the variations of the solid atomic mass and the bonding strength between solid atoms change the frequency distribution of the vibration of the solid atoms, resulting in a difference in the thermal vibrational coupling between solid and liquid atoms. Our study indicates that the interfacial thermal resistance is not only related to the interfacial solid-liquid bonding strength which is characterized by the contact angle, but also the thermal vibrational coupling between solid and liquid atoms. There is not a simple relationship between the contact angle and the interfacial thermal resistance. The contact angle could not be used as an exclusive criterion for solid-liquid interfacial resistance estimation.
-
Keywords:
- solid-liquid interface /
- contact angle /
- interfacial thermal resistance /
- molecular dynamics simulation
[1] Cahill D G, Ford W K, Goodson K E, Majumdar A, Mariset H J, Merlin R, Phillpot S R 2010 J. Appl. Phys. 93 793
[2] Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605
[3] Barrat J L, Chiaruttini F 2003 Mol. Phys. 101 1605
[4] Xue L, Keblinski P, Phillipot S R, Choi S U S, Eastman J A 2003 J. Chem. Phys. 118 337
[5] Ge Z B, Cahill D G, Braun P V 2006 Phys. Rev. Lett. 96 186101
[6] Gu C Y, Di Q F, Shi L Y, Wu F, Wang W C, Yu Z B 2008 Acta Phys. Sin. 57 3071 (in Chinese) [顾春元, 狄勤丰, 施利毅, 吴非, 王文昌, 余祖斌 2008 物理学报 57 3071]
[7] Ma H M, Hong L, Yin Y, Xu J, Ye H 2011 Acta Phys. Sin. 60 098105 (in Chinese) [马海敏, 洪亮, 尹伊, 许坚, 叶辉 2011 物理学报 60 098105]
[8] Gong M G, Xu X L, Cao Z L, Liu Y Y, Zhu H M 2009 Acta Phys. Sin. 58 1885 (in Chinese) [公茂刚, 许小亮, 曹自立, 刘远越, 朱海明 2009 物理学报 58 1885]
[9] Murad S, Puri I K 2008 Appl. Phys. Lett. 92 133105
[10] Wang Y, Keblinski P 2011 Appl. Phys. Lett. 99 073112
[11] Shenogina N, Godawat R, Keblinski P, Garde S 2009 Phys. Rev. Lett. 102 156101
[12] Shi B, Dhir V K 2009 J. Chem. Phys. 130 034705
[13] Leroy F, Mller-Plathe F 2010 J. Chem. Phys. 133 044110
[14] Voronov R S, Papavassiliou D V, Lee L L 2006 J. Chem. Phys. 124 204701
[15] Sedlmeier F, Janecek J, Sendner C, Bocquet L, Netz R R, Horinek D 2008 Biointerphases 3 23
[16] Rowlinson J, Widom B 1982 Molecular Theory of Capillarity (Oxford: Oxford University Press) p86
[17] Maruyama S, Kimura T 1999 Therm. Sci. Eng. 7 63
[18] Kikugawa G, Ohara T, Kawaguchi T, Torigoe E, Hagiwara Y, Matsumoto Y 2009 J. Appl. Phys. 130 074706
[19] Issa K M, Mohamad A A 2012 Phys. Rev. E 85 031602
[20] Huxtable S T, Cahill D G, Shenogin S, Keblinski P 2005 Chem. Phys. Lett. 407 129
-
[1] Cahill D G, Ford W K, Goodson K E, Majumdar A, Mariset H J, Merlin R, Phillpot S R 2010 J. Appl. Phys. 93 793
[2] Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605
[3] Barrat J L, Chiaruttini F 2003 Mol. Phys. 101 1605
[4] Xue L, Keblinski P, Phillipot S R, Choi S U S, Eastman J A 2003 J. Chem. Phys. 118 337
[5] Ge Z B, Cahill D G, Braun P V 2006 Phys. Rev. Lett. 96 186101
[6] Gu C Y, Di Q F, Shi L Y, Wu F, Wang W C, Yu Z B 2008 Acta Phys. Sin. 57 3071 (in Chinese) [顾春元, 狄勤丰, 施利毅, 吴非, 王文昌, 余祖斌 2008 物理学报 57 3071]
[7] Ma H M, Hong L, Yin Y, Xu J, Ye H 2011 Acta Phys. Sin. 60 098105 (in Chinese) [马海敏, 洪亮, 尹伊, 许坚, 叶辉 2011 物理学报 60 098105]
[8] Gong M G, Xu X L, Cao Z L, Liu Y Y, Zhu H M 2009 Acta Phys. Sin. 58 1885 (in Chinese) [公茂刚, 许小亮, 曹自立, 刘远越, 朱海明 2009 物理学报 58 1885]
[9] Murad S, Puri I K 2008 Appl. Phys. Lett. 92 133105
[10] Wang Y, Keblinski P 2011 Appl. Phys. Lett. 99 073112
[11] Shenogina N, Godawat R, Keblinski P, Garde S 2009 Phys. Rev. Lett. 102 156101
[12] Shi B, Dhir V K 2009 J. Chem. Phys. 130 034705
[13] Leroy F, Mller-Plathe F 2010 J. Chem. Phys. 133 044110
[14] Voronov R S, Papavassiliou D V, Lee L L 2006 J. Chem. Phys. 124 204701
[15] Sedlmeier F, Janecek J, Sendner C, Bocquet L, Netz R R, Horinek D 2008 Biointerphases 3 23
[16] Rowlinson J, Widom B 1982 Molecular Theory of Capillarity (Oxford: Oxford University Press) p86
[17] Maruyama S, Kimura T 1999 Therm. Sci. Eng. 7 63
[18] Kikugawa G, Ohara T, Kawaguchi T, Torigoe E, Hagiwara Y, Matsumoto Y 2009 J. Appl. Phys. 130 074706
[19] Issa K M, Mohamad A A 2012 Phys. Rev. E 85 031602
[20] Huxtable S T, Cahill D G, Shenogin S, Keblinski P 2005 Chem. Phys. Lett. 407 129
Catalog
Metrics
- Abstract views: 7829
- PDF Downloads: 1940
- Cited By: 0