Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of equilibrium contact angle on spreading dynamics of a heated droplet on a horizontal plate

Ye Xue-Min Li Yong-Kang Li Chun-Xi

Citation:

Influence of equilibrium contact angle on spreading dynamics of a heated droplet on a horizontal plate

Ye Xue-Min, Li Yong-Kang, Li Chun-Xi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In most of researches about the droplet spreading on a substrate, one adopts aprecursor layer to relieve the stress singularity near the contact line without considering wall properties, which, however, is inapplicable for studying the relationship of the wettability with wall temperature. In this paper, the spreading of a heated droplet on the solid substrate, under the action of the three-phase contact line, is simulated. The influences of the wall temperature on wettability and droplet spreading are examined from the viewpoint of equilibrium contact angle. The simulated results show that when the wall temperature is uniform, the evolution of droplet spreading is dominated only by the gravity, illustrating symmetrical spreading characteristics. When the temperature gradient is applied to the wall, the combination of thermocapillary force and gravity drives the droplet into spreading, therefore the main part of the droplet migrates toward the low temperature region due to the Marangoni effect. The left contact line continually moves toward the left side while the right contact line first moves toward the right side, then turns to the left side after the receding time. The spreading range of the droplet is changed notably because of different travelling speeds of the contact line on both sides. With the increase of the temperature gradient, the Marangoni effect is promoted, resulting in a faster migration toward the low temperature region. A thin film is formed between the contact line in the hotter region and the bulk of the droplet, where the gravity and thermocapillary force dominate the spreading successively. The present simulation shows that the surface wettability is not only dependent on its chemical composition and geometrical morphology, but also closely related to wall temperature. When the sensitivities of the liquid-solid, liquid-gas and solid-gas interfacial tensions to temperature are all identical, the equilibrium contact angle between the droplet and the wall keeps constant, leading to a uniform wettability on the wall. When the liquid-solid interfacial tension or the liquid-gas interfacial tension is more sensitive to temperature than the other two interfaces, the equilibrium contact angle increases and the wettability tends to be worse, presenting a more hydrophobic substrate, which decelerates the spreading of the droplet with the contact line moving to the colder region. As the solid-gas interfacial tension is more sensitive to temperature than the other two interfaces, the equilibrium contact angle tends to lessen, and the contact line feels a more hydrophilic substrate (the droplet wets perfectly when the equilibrium contact angle decreases to zero), hence the spreading is enhanced. The present results indicate that the equilibrium contact angle plays a key role in the evolution of a heated droplet on a horizontal plate. The simulation conclusions can provide a theoretical basis for relevant experimental findings, which promotes the understanding of the relationship between wall temperature and its wettability.
      Corresponding author: Ye Xue-Min, yexuemin@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11202079) and the Natural Science Foundation of Hebei Province, China (Grant No. A2015502058).
    [1]

    Craster R V, Matar O K 2009 Rev. Mod. Phys. 81 1131

    [2]

    Lee K S, Ivanova N, Starov V M, Hilal N, Dutschk V 2008 Adv. Colloid Interface Sci. 144 54

    [3]

    Zhu J Y, Duan Y Y, Wang X D, Min Q 2014 CIESC Journal 03 765 (in Chinese) [朱君悦, 段远源, 王晓东, 闵琪 2014 化工学报 03 765]

    [4]

    Liu S S, Zhang C H, Zhang H B, Zhou J, He J G, Yin H Y 2013 Chin. Phys. B 22 0106801

    [5]

    Daniel S, Chaudhury M K, Chen J C 2001 Science 291 633

    [6]

    Sato M, Araki K, Matsuura M, Hasegawa K, Endo A 2001 Proceedings of the 2nd Pan Pacific Basin Workshop on Microgravity Sciences Pasadena, CA, May 1-4, 2001 pIF-1123

    [7]

    Pratap V, Moumen N, Subramanian R S 2008 Langmuir 24 5185

    [8]

    Wang X D, Peng X F, Wang B X 2004 Journal of Basic Science and Engineering 11 396 (in Chinese) [王晓东, 彭晓峰, 王补宣 2004 应用基础与工程科学学报 11 396]

    [9]

    Beacham D R, Matar O K, Craster R V 2009 Langmuir 25 14174

    [10]

    Goddard J V, Naire S 2015 J. Fluid Mech. 772 535

    [11]

    Li C X, Pei J J, Ye X M 2013 Acta Phys. Sin. 62 174702 (in Chinese) [李春曦, 裴建军, 叶学民 2013 物理学报 62 174702]

    [12]

    Li C X, Chen P Q, Ye X M 2015 Acta Phys. Sin. 64 014702 (in Chinese) [李春曦, 陈朋强, 叶学民 2015 物理学报 64 014702]

    [13]

    Ye X M, Jiang K, Li C X 2013 CIESC Journal 64 3581 (in Chinese) [叶学民, 姜凯, 李春曦 2013 化工学报 64 3581]

    [14]

    Zhao Y P, Yuan Q Z 2013 Advances in Mechanics 43 I0006 (in Chinese) [赵亚溥, 袁泉子 2013力学进展 43 I0006]

    [15]

    Yao Y, Zhou Z W,Hu G H 2013 Acta Phys. Sin. 62 134701 (in Chinese) [姚祎, 周哲玮, 胡国辉 2013 物理学报 62 134701]

    [16]

    Yang C W, He F, Hao P F 2010 Scientia Sinica Chimica 53 912 (in Chinese) [杨常卫, 何枫, 郝鹏飞 2010 中国科学: 化学 53 912]

    [17]

    Karapetsas G, Sahu K C, Matar O K 2013 Langmuir 29 8892

    [18]

    Amir A, Reghan J H 2015 Condens. Matter 1507 06549

    [19]

    Hu H B, Chen L B, Bao L Y, Huang S H 2014 Chin. Phys. B 23 074702

    [20]

    Karapetsas G, Craster R V, Matar O K 2011 J. Fluid Mech. 670 5

    [21]

    Mukhopadhyay S, Murisic N, Behringer R P, Kondic L 2011 Phys. Rev. E 83 046302

    [22]

    Karapetsas G, Sahu K C, Sefiane K, Matar O K 2014 Langmuir 30 4310

    [23]

    Ehrhard P 1993 J. Fluid Mech. 257 463

    [24]

    Gomba J M, Homsy G M 2010 J. Fluid Mech. 647 125

  • [1]

    Craster R V, Matar O K 2009 Rev. Mod. Phys. 81 1131

    [2]

    Lee K S, Ivanova N, Starov V M, Hilal N, Dutschk V 2008 Adv. Colloid Interface Sci. 144 54

    [3]

    Zhu J Y, Duan Y Y, Wang X D, Min Q 2014 CIESC Journal 03 765 (in Chinese) [朱君悦, 段远源, 王晓东, 闵琪 2014 化工学报 03 765]

    [4]

    Liu S S, Zhang C H, Zhang H B, Zhou J, He J G, Yin H Y 2013 Chin. Phys. B 22 0106801

    [5]

    Daniel S, Chaudhury M K, Chen J C 2001 Science 291 633

    [6]

    Sato M, Araki K, Matsuura M, Hasegawa K, Endo A 2001 Proceedings of the 2nd Pan Pacific Basin Workshop on Microgravity Sciences Pasadena, CA, May 1-4, 2001 pIF-1123

    [7]

    Pratap V, Moumen N, Subramanian R S 2008 Langmuir 24 5185

    [8]

    Wang X D, Peng X F, Wang B X 2004 Journal of Basic Science and Engineering 11 396 (in Chinese) [王晓东, 彭晓峰, 王补宣 2004 应用基础与工程科学学报 11 396]

    [9]

    Beacham D R, Matar O K, Craster R V 2009 Langmuir 25 14174

    [10]

    Goddard J V, Naire S 2015 J. Fluid Mech. 772 535

    [11]

    Li C X, Pei J J, Ye X M 2013 Acta Phys. Sin. 62 174702 (in Chinese) [李春曦, 裴建军, 叶学民 2013 物理学报 62 174702]

    [12]

    Li C X, Chen P Q, Ye X M 2015 Acta Phys. Sin. 64 014702 (in Chinese) [李春曦, 陈朋强, 叶学民 2015 物理学报 64 014702]

    [13]

    Ye X M, Jiang K, Li C X 2013 CIESC Journal 64 3581 (in Chinese) [叶学民, 姜凯, 李春曦 2013 化工学报 64 3581]

    [14]

    Zhao Y P, Yuan Q Z 2013 Advances in Mechanics 43 I0006 (in Chinese) [赵亚溥, 袁泉子 2013力学进展 43 I0006]

    [15]

    Yao Y, Zhou Z W,Hu G H 2013 Acta Phys. Sin. 62 134701 (in Chinese) [姚祎, 周哲玮, 胡国辉 2013 物理学报 62 134701]

    [16]

    Yang C W, He F, Hao P F 2010 Scientia Sinica Chimica 53 912 (in Chinese) [杨常卫, 何枫, 郝鹏飞 2010 中国科学: 化学 53 912]

    [17]

    Karapetsas G, Sahu K C, Matar O K 2013 Langmuir 29 8892

    [18]

    Amir A, Reghan J H 2015 Condens. Matter 1507 06549

    [19]

    Hu H B, Chen L B, Bao L Y, Huang S H 2014 Chin. Phys. B 23 074702

    [20]

    Karapetsas G, Craster R V, Matar O K 2011 J. Fluid Mech. 670 5

    [21]

    Mukhopadhyay S, Murisic N, Behringer R P, Kondic L 2011 Phys. Rev. E 83 046302

    [22]

    Karapetsas G, Sahu K C, Sefiane K, Matar O K 2014 Langmuir 30 4310

    [23]

    Ehrhard P 1993 J. Fluid Mech. 257 463

    [24]

    Gomba J M, Homsy G M 2010 J. Fluid Mech. 647 125

  • [1] Liu Qiao, Huang Jia-Chen, Wang Hao, Deng Ya-Jun. Structure and migration mechanism of thin liquid film in vicinity of advancing contact line. Acta Physica Sinica, 2024, 73(1): 016801. doi: 10.7498/aps.73.20231296
    [2] Qin Wei-Guang, Wang Jin, Ji Wen-Jie, Zhao Wen-Jing, Chen Cong, Lan Ding, Wang Yu-Ren. Spreading dynamics of liquid-liquid driving. Acta Physica Sinica, 2022, 71(6): 064701. doi: 10.7498/aps.71.20211682
    [3] Liu Zhe, Wang Lei-Lei, Shi Peng-Peng, Cui Hai-Hang. Experiments and analytical solutions of light driven flow in nanofluid droplets. Acta Physica Sinica, 2020, 69(6): 064701. doi: 10.7498/aps.69.20191508
    [4] Ye Xue-Min, Zhang Xiang-Shan, Li Ming-Lan, Li Chun-Xi. Thermocapillary migration characteristics of self-rewetting drop. Acta Physica Sinica, 2018, 67(18): 184704. doi: 10.7498/aps.67.20180660
    [5] Ye Xue-Min, Li Yong-Kang, Li Chun-Xi. Spreading and heat transfer characteristics of droplet on a heated substrate. Acta Physica Sinica, 2016, 65(23): 234701. doi: 10.7498/aps.65.234701
    [6] Cui Shu-Wen, Zhu Ru-Zeng, Wei Jiu-An, Wang Xiao-Song, Yang Hong-Xiu, Xu Sheng-Hua, Sun Zhi-Wei. The method for determining nano-contact angle. Acta Physica Sinica, 2015, 64(11): 116802. doi: 10.7498/aps.64.116802
    [7] Zhou Hong-Wei, Wang Lin-Wei, Xu Sheng-Hua, Sun Zhi-Wei. Capillary-driven flow in tubes connected to the containers under microgravity condition. Acta Physica Sinica, 2015, 64(12): 124703. doi: 10.7498/aps.64.124703
    [8] Zhou Jian-Chen, Geng Xing-Guo, Lin Ke-Jun, Zhang Yong-Jian, Zang Du-Yang. Stick-slip transition of a water droplet vibrated on a superhydrophobic surface. Acta Physica Sinica, 2014, 63(21): 216801. doi: 10.7498/aps.63.216801
    [9] Li Chun-Xi, Pei Jian-Jun, Ye Xue-Min. Dynamics of insoluble surfactant-laden thin films flow over inclined random topography. Acta Physica Sinica, 2013, 62(21): 214704. doi: 10.7498/aps.62.214704
    [10] Zhang Wen-Bin, Liao Long-Guang, Yu Tong-Xu, Ji Ai-Ling. Ring deposition of drying suspension droplets. Acta Physica Sinica, 2013, 62(19): 196102. doi: 10.7498/aps.62.196102
    [11] Jing Wei-Xuan, Wang Bing, Niu Ling-Ling, Qi Han, Jiang Zhuang-De, Chen Lu-Jia, Zhou Fan. Relationships between synthesizing parameters, morphology, and contact angles of ZnO nanowire films. Acta Physica Sinica, 2013, 62(21): 218102. doi: 10.7498/aps.62.218102
    [12] Ge Song, Chen Min. A molecular dynamics simulation on the relationship between contact angle and solid-liquid interfacial thermal resistance. Acta Physica Sinica, 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [13] Wei Qi, E Wen-Ji. Thermodynamic analyses of dewetting instability in thin films. Acta Physica Sinica, 2012, 61(16): 160508. doi: 10.7498/aps.61.160508
    [14] Xu Sheng-Hua, Wang Lin-Wei, Sun Zhi-Wei, Wang Cai-Xia. The study on the mechanism of liquid surface in interior corner and the applicability of Surface Evolver. Acta Physica Sinica, 2012, 61(16): 166801. doi: 10.7498/aps.61.166801
    [15] Shi Juan, Li Hua-Bing, Wang Wen-Xia, Qiu Bing. Lattice Boltzmann simulation of surface hydrophobicity with nano-structure. Acta Physica Sinica, 2010, 59(12): 8371-8376. doi: 10.7498/aps.59.8371
    [16] Wang Xiao-Song, Zhu Ru-Zeng. Generalization of Berthelot geometric averaging rule for adhesion work of solid-liquid interface and its applications. Acta Physica Sinica, 2010, 59(11): 8010-8014. doi: 10.7498/aps.59.8010
    [17] Shi Zi-Yuan, Hu Guo-Hui, Zhou Zhe-Wei. Lattice Boltzmann simulation of droplet motion driven by gradient of wettability. Acta Physica Sinica, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [18] Gu Chun-Yuan, Di Qin-Feng, Shi Li-Yi, Wu Fei, Wang Wen-Chang, Yu Zu-Bin. Experimental investigation of superhydrophobic properties of the surface constructed by nanoparticles. Acta Physica Sinica, 2008, 57(5): 3071-3076. doi: 10.7498/aps.57.3071
    [19] Wang Fei, He Feng. A numerical method for two-phase flow in micro channels and its application to droplet control by electrowetting on dielectric. Acta Physica Sinica, 2006, 55(3): 1005-1010. doi: 10.7498/aps.55.1005
    [20] Cao Zhi-Jue, Xia Bo-Li, Zhang Yun. The possibility for realizing dropwise condensation with small contact angle. Acta Physica Sinica, 2003, 52(10): 2427-2431. doi: 10.7498/aps.52.2427
Metrics
  • Abstract views:  6649
  • PDF Downloads:  273
  • Cited By: 0
Publishing process
  • Received Date:  25 December 2015
  • Accepted Date:  05 February 2016
  • Published Online:  05 May 2016

/

返回文章
返回