Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermocapillary migration characteristics of self-rewetting drop

Ye Xue-Min Zhang Xiang-Shan Li Ming-Lan Li Chun-Xi

Citation:

Thermocapillary migration characteristics of self-rewetting drop

Ye Xue-Min, Zhang Xiang-Shan, Li Ming-Lan, Li Chun-Xi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The thermocapillary migration characteristics of a self-wetting drop on the non-uniformly heated, horizontal, solid substrate are investigagted by numerical simulation. Based on the lubrication theory, an evolution equation for the height of the two-dimensional drop is established. The substrate underlying the drop is subjected to a temperature gradient which induces surface tension gradient-driven drop deformation and migration. The self-rewetting fluid has non-monotonic dependence of the surface tension on temperature with a well-defined minimum, and the position of the minimum corresponding to the temperature on the substrate is called the critical point. The effect of the relationship between the critical point and the drop position on drop dynamics is analyzed. With the temperature sensitivity coefficient of three interfaces under the same condition, the substrate is illustrated with constant wettability. The direction of drop migration will alter as the initial drop location moves to the left relative to the critical point position, resulting from the variation of the interplay among thermocapillary, gravity, and capillarity forces within the drop. But the drop always migrates toward the high interfacial tension region due to the thermocapillary force. In the presence of substrate wettability variations, the drop migrates toward the low temperature region no matter where the drop is placed relative to the critical point. This is due to the fact that the deterioration of substrate wettability on the right side of the drop prevents the drop from migrating toward the hot region. Under the critical point being on the left or within the drop, as the initial drop location moves to the left relative to the critical point position, the enhancement of the thermocapillary force toward the left leads to increased moving speed of the left contact line and increased spreading area. When the critical point is positioned on the outer right side of the drop, the speed of the left contact line sharply decreases at t=6103, caused by the suddenly deteriorating substrate wettability. Hence, it is effective to manipulate the self-wetting drop movement by regulating the relationship between the critical point and the initial drop location. To inhibit the migration of the drop toward the cold region, the drop should be placed on the right side of the critical point.
      Corresponding author: Li Chun-Xi, leechunxi@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11202079) and the Fundamental Research for the Central Universities, China (Grant No. 13MS97).
    [1]

    Wu Z B 2017 Int. J. Heat Mass Transf. 105 704

    [2]

    Chaudhury K, Chakraborty S 2015 Langmuir 31 4169

    [3]

    Legros J C, Limbourg-Fontaine M C, Petre G 1984 Acta Astronaut. 11 143

    [4]

    Abe Y, Iwasaki A, Tanaka K 2004 Ann. NY Acad. Sci. 1027 269

    [5]

    Oron A, Rosenau P 1994 J. Fluid Mech. 273 361

    [6]

    Batson W, Agnon Y, Oron A 2017 J. Fluid Mech. 819 562

    [7]

    Karapetsas G, Sahu K C, Sefiane K, Matar O K 2014 Langmuir 30 4310

    [8]

    Mamalis D, Koutsos V, Sefiane K 2016 Appl. Phys. Lett. 109 231601

    [9]

    Mamalis D, Koutsos V, Sefiane K 2017 Int. J. Therm. Sci. 117 146

    [10]

    Ouenzerfi S, Harmand S 2016 Langmuir 32 2378

    [11]

    Di Francescantonio N, Savino R, Abe Y 2008 Int. J. Heat Mass Transf. 51 6199

    [12]

    Hu Y, Zhang S, Li X, Wang S 2015 Int. J. Heat Mass Transf. 83 64

    [13]

    Zhou L P, Li Y Y, Wei L T, Du X Z, Wang B X 2014 J. Chem. Ind. Eng. 65 79 (in Chinese) [周乐平, 李媛园, 魏龙亭, 杜小泽, 王补宣 2014 化工学报 65 79]

    [14]

    Sitar A, Golobic I 2015 Int. J. Heat Mass Transf. 81 198

    [15]

    Wu S C 2015 Int. J. Therm. Sci. 98 374

    [16]

    Gao P, Yin Z H, Hu W R 2008 Adv. Mech. 38 329 (in Chinese) [高鹏, 尹兆华, 胡文瑞 2008 力学进展 38 329]

    [17]

    Gomba J M, Homsy G M 2010 J. Fluid Mech. 647 125

    [18]

    Pratap V, Moumen N, Subramanian R S 2008 Langmuir 24 5185

    [19]

    Nguyen H B, Chen J C 2010 Phys. Fluids 22 062102

    [20]

    Dai Q, Khonsari M M, Shen C, Huang W, Wang X 2016 Langmuir 32 7485

    [21]

    Sui Y 2014 Phys. Fluids 26 092102

    [22]

    Ye X M, Li Y K, Li C X 2016 Acta Phys. Sin. 65 104704 (in Chinese) [叶学民, 李永康, 李春曦 2016 物理学报 65 104704]

    [23]

    Karapetsas G, Chamakos N T, Papathanasiou A G 2017 Langmuir 33 10838

    [24]

    Zhao Y P 2012 Phys. Mech. Surf. Interface (Beijing: Science Press) p185, 186 (in Chinese) [赵亚溥 2012 表面与界面物理力学 (北京: 科学出版社)第185, 186 页]

    [25]

    Mukhopadhyay S, Murisic N, Behringer R P, Kondic L 2011 Phys. Rev. E 83 046302

    [26]

    Craster R V, Matar O K 2000 J. Fluid Mech. 425 235

    [27]

    Karapetsas G, Sahu K C, Matar O K 2013 Langmuir 29 8892

    [28]

    Karapetsas G, Sahu K C, Matar O K 2016 Langmuir 32 6871

    [29]

    Ehrhard P, Davis S H 1991 J. Fluid Mech. 229 365

    [30]

    Bakli C, Sree Hari P D, Chakraborty S 2017 Nanoscale 9 12509

  • [1]

    Wu Z B 2017 Int. J. Heat Mass Transf. 105 704

    [2]

    Chaudhury K, Chakraborty S 2015 Langmuir 31 4169

    [3]

    Legros J C, Limbourg-Fontaine M C, Petre G 1984 Acta Astronaut. 11 143

    [4]

    Abe Y, Iwasaki A, Tanaka K 2004 Ann. NY Acad. Sci. 1027 269

    [5]

    Oron A, Rosenau P 1994 J. Fluid Mech. 273 361

    [6]

    Batson W, Agnon Y, Oron A 2017 J. Fluid Mech. 819 562

    [7]

    Karapetsas G, Sahu K C, Sefiane K, Matar O K 2014 Langmuir 30 4310

    [8]

    Mamalis D, Koutsos V, Sefiane K 2016 Appl. Phys. Lett. 109 231601

    [9]

    Mamalis D, Koutsos V, Sefiane K 2017 Int. J. Therm. Sci. 117 146

    [10]

    Ouenzerfi S, Harmand S 2016 Langmuir 32 2378

    [11]

    Di Francescantonio N, Savino R, Abe Y 2008 Int. J. Heat Mass Transf. 51 6199

    [12]

    Hu Y, Zhang S, Li X, Wang S 2015 Int. J. Heat Mass Transf. 83 64

    [13]

    Zhou L P, Li Y Y, Wei L T, Du X Z, Wang B X 2014 J. Chem. Ind. Eng. 65 79 (in Chinese) [周乐平, 李媛园, 魏龙亭, 杜小泽, 王补宣 2014 化工学报 65 79]

    [14]

    Sitar A, Golobic I 2015 Int. J. Heat Mass Transf. 81 198

    [15]

    Wu S C 2015 Int. J. Therm. Sci. 98 374

    [16]

    Gao P, Yin Z H, Hu W R 2008 Adv. Mech. 38 329 (in Chinese) [高鹏, 尹兆华, 胡文瑞 2008 力学进展 38 329]

    [17]

    Gomba J M, Homsy G M 2010 J. Fluid Mech. 647 125

    [18]

    Pratap V, Moumen N, Subramanian R S 2008 Langmuir 24 5185

    [19]

    Nguyen H B, Chen J C 2010 Phys. Fluids 22 062102

    [20]

    Dai Q, Khonsari M M, Shen C, Huang W, Wang X 2016 Langmuir 32 7485

    [21]

    Sui Y 2014 Phys. Fluids 26 092102

    [22]

    Ye X M, Li Y K, Li C X 2016 Acta Phys. Sin. 65 104704 (in Chinese) [叶学民, 李永康, 李春曦 2016 物理学报 65 104704]

    [23]

    Karapetsas G, Chamakos N T, Papathanasiou A G 2017 Langmuir 33 10838

    [24]

    Zhao Y P 2012 Phys. Mech. Surf. Interface (Beijing: Science Press) p185, 186 (in Chinese) [赵亚溥 2012 表面与界面物理力学 (北京: 科学出版社)第185, 186 页]

    [25]

    Mukhopadhyay S, Murisic N, Behringer R P, Kondic L 2011 Phys. Rev. E 83 046302

    [26]

    Craster R V, Matar O K 2000 J. Fluid Mech. 425 235

    [27]

    Karapetsas G, Sahu K C, Matar O K 2013 Langmuir 29 8892

    [28]

    Karapetsas G, Sahu K C, Matar O K 2016 Langmuir 32 6871

    [29]

    Ehrhard P, Davis S H 1991 J. Fluid Mech. 229 365

    [30]

    Bakli C, Sree Hari P D, Chakraborty S 2017 Nanoscale 9 12509

  • [1] Liu He, Yang Ya-Jing, Tang Yu-Ning, Wei Yan-Ju. Dynamics of acoustically-induced droplet instability. Acta Physica Sinica, 2024, 73(20): 204204. doi: 10.7498/aps.73.20240965
    [2] Liu Qiao, Huang Jia-Chen, Wang Hao, Deng Ya-Jun. Structure and migration mechanism of thin liquid film in vicinity of advancing contact line. Acta Physica Sinica, 2024, 73(1): 016801. doi: 10.7498/aps.73.20231296
    [3] Li Chun-Xi, Ma Cheng, Ye Xue-Min. Thermocapillary migration of thin droplet on wettability-confined track. Acta Physica Sinica, 2023, 72(2): 024702. doi: 10.7498/aps.72.20221562
    [4] Peng Jia-Lue, Guo Hao, You Tian-Ya, Ji Xian-Bing, Xu Jin-Liang. Behavioral characteristics of droplet collision on Janus particle spheres. Acta Physica Sinica, 2021, 70(4): 044701. doi: 10.7498/aps.70.20201358
    [5] Li Wen, Ma Xiao-Jing, Xu Jin-Liang, Wang Yan, Lei Jun-Peng. Effects of base angle and wettability of nanostructures on droplet wetting behaviors. Acta Physica Sinica, 2021, 70(12): 126101. doi: 10.7498/aps.70.20201584
    [6] Tang Peng-Bo, Wang Guan-Qing, Wang Lu, Shi Zhong-Yu, Li Yuan, Xu Jiang-Rong. Experimental investigation on dynamic behavior of single droplet impcating normally on dry sphere. Acta Physica Sinica, 2020, 69(2): 024702. doi: 10.7498/aps.69.20191141
    [7] Wei Yan-Ju, Zhang Jie, Deng Sheng-Cai, Zhang Ya-Jie, Yang Ya-Jing, Liu Sheng-Hua, Chen Hao. Phenomenon study on heat induced atomization of acoustic levitated methanol droplet. Acta Physica Sinica, 2020, 69(18): 184702. doi: 10.7498/aps.69.20200562
    [8] Yang Ya-Jing, Mei Chen-Xi, Zhang Xu-Dong, Wei Yan-Ju, Liu Sheng-Hua. Kinematics and passing modes of a droplet impacting on a soap film. Acta Physica Sinica, 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [9] Ye Xue-Min, Zhang Xiang-Shan, Li Ming-Lan, Li Chun-Xi. Dynamics of evaporating drop on heated surfaces with different wettabilities. Acta Physica Sinica, 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [10] Ye Xue-Min, Li Yong-Kang, Li Chun-Xi. Spreading and heat transfer characteristics of droplet on a heated substrate. Acta Physica Sinica, 2016, 65(23): 234701. doi: 10.7498/aps.65.234701
    [11] Ye Xue-Min, Li Yong-Kang, Li Chun-Xi. Influence of equilibrium contact angle on spreading dynamics of a heated droplet on a horizontal plate. Acta Physica Sinica, 2016, 65(10): 104704. doi: 10.7498/aps.65.104704
    [12] Zhou Jian-Chen, Geng Xing-Guo, Lin Ke-Jun, Zhang Yong-Jian, Zang Du-Yang. Stick-slip transition of a water droplet vibrated on a superhydrophobic surface. Acta Physica Sinica, 2014, 63(21): 216801. doi: 10.7498/aps.63.216801
    [13] Zhang Wen-Bin, Liao Long-Guang, Yu Tong-Xu, Ji Ai-Ling. Ring deposition of drying suspension droplets. Acta Physica Sinica, 2013, 62(19): 196102. doi: 10.7498/aps.62.196102
    [14] Ma Li-Qiang, Liu Mou-Bin, Chang Jian-Zhong, Su Tie-Xiong, Liu Han-Tao. Numerical simulation of droplet impact onto liquid films with smoothed particle hydrodynamics. Acta Physica Sinica, 2012, 61(24): 244701. doi: 10.7498/aps.61.244701
    [15] Bi Fei-Fei, Guo Ya-Li, Shen Sheng-Qiang, Chen Jue-Xian, Li Yi-Qiao. Experimental study of spread characteristics of droplet impacting solid surface. Acta Physica Sinica, 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
    [16] Ma Li-Qiang, Chang Jian-Zhong, Liu Han-Tao, Liu Mou-Bin. Numerical simulation of droplet impact on liquid with smoothed particle hydrodynamics method. Acta Physica Sinica, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [17] Zhang Ming-kun, Chen Shuo, Shang Zhi. Numerical simulation of a droplet motion in a grooved microchannel. Acta Physica Sinica, 2012, 61(3): 034701. doi: 10.7498/aps.61.034701
    [18] Yan Zhen-Lin, Xie Wen-Jun, Shen Chang-Le, Wei Bing-Bo. Surface capillary wave and the eighth mode sectorial oscillation of acoustically levitated drop. Acta Physica Sinica, 2011, 60(6): 064302. doi: 10.7498/aps.60.064302
    [19] Guo Jia-Hong, Dai Shi-Qiang, Dai Qin. Experimental research on the droplet impacting on the liquid film. Acta Physica Sinica, 2010, 59(4): 2601-2609. doi: 10.7498/aps.59.2601
    [20] Shi Zi-Yuan, Hu Guo-Hui, Zhou Zhe-Wei. Lattice Boltzmann simulation of droplet motion driven by gradient of wettability. Acta Physica Sinica, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
Metrics
  • Abstract views:  6269
  • PDF Downloads:  125
  • Cited By: 0
Publishing process
  • Received Date:  11 April 2018
  • Accepted Date:  09 May 2018
  • Published Online:  20 September 2019

/

返回文章
返回