-
A quantitative phase-field model is developed to study the evolution of vacancy cluster in Fe. Total energy of the system is constructed based on the assumption of ideal gas state equation, and an approach to linking the computational parameters in the phase-field model to the experimental properties of Fe is provided. Such a phase filed model is employed to quantitatively investigate the nucleations, growths, and coalescences of voids in single and polycrystalline Fe. The effects of grain boundary on voids evolution are also investigated. These results provide a way of further studying the evolution behaviors of both H/He gas atoms and voids in Fe.
-
Keywords:
- Fe /
- voids /
- evolution /
- phase field
[1] Klueh R L, Alexander D J 1995 J. Nucl. Mater. 218 151
[2] Jung P, Henry J, Chen J, Brachet J C 2003 J. Nucl. Mater. 318 241
[3] Liu Y L, Zhang Y, Zhou H B, Lu G H, Liu F, Luo G N 2009 Phys. Rev. B 79 172103
[4] Zhou H B, Liu Y L, Jin S, Zhang Y, Luo G N, Lu G H 2010 Nucl. Fusi. 50 115010
[5] Alkhamees A, Liu Y L, Zhou H B, Zhang Y, Lu G H 2009 J. Nucl. Mater. 309 508
[6] Li X C, Shu X L, Liu Y N, Gao F, Lu G H 2011 J. Nucl. Mater. 48 12
[7] Chen L Q 2002 Annu. Rev. Mater. Res. 32 113
[8] Hu S Y, Henager C H, Heinisch H L, Stan M, Baskes M I, Valone S M 2009 J. Nucl. Mater. 392 292
[9] Hu S Y, Henager C H 2009 J. Nucl. Mater. 394 155
[10] Rokkam S, El-Azab A, Millett P, Wolf D 2009 Model Simul. Mater. Sci. Eng. 17 064002
[11] Millett P C, Rokkam S, El-Azab A, Tonks M, Wolf D 2009 Model. Simul. Mater. Sci. Eng. 17 064003
[12] Stan M, Ramirez J C, Cristea P, Hu S Y, Deo C, Uberuaga B P, Srivilliputhur S, Rudin S P, Wills J M 2007 J. Allo. Comput. 444-445 415
[13] Golubov S I, Stoller R E, Zinkle S J, Ovcharenko A M 2007J. Nucl. Mater. 361 149
[14] Kmetyk L N, Sommer W F, Weertman J 1981 J. Nucl. Mater. 103-104 1409
[15] Chen L Q, Shen J 1998 Comput. Phys. Commu. 108 147
[16] Ono K, Arakawa K, Hojou K 2002 J. Nucl. Mater. 307 1507
[17] Brass A M, Chanfreau A, Chene J 1994 Metall. Etallu. Mater. Trans. A 25A 2117
[18] Zhao F, Qiao J S, Huang Y, Wan F R, Ohnuki S 2008 Mater. Character. 59 344
[19] Krill C E, Chen L Q 2002 Acta Mater. 50 3957
[20] Dudarev S L, Semenov A A, Woo C H 2003 Phy. Rev. B 67 094103
[21] Vaidya W V 1983 J. Nucl. Mater. 113 219
-
[1] Klueh R L, Alexander D J 1995 J. Nucl. Mater. 218 151
[2] Jung P, Henry J, Chen J, Brachet J C 2003 J. Nucl. Mater. 318 241
[3] Liu Y L, Zhang Y, Zhou H B, Lu G H, Liu F, Luo G N 2009 Phys. Rev. B 79 172103
[4] Zhou H B, Liu Y L, Jin S, Zhang Y, Luo G N, Lu G H 2010 Nucl. Fusi. 50 115010
[5] Alkhamees A, Liu Y L, Zhou H B, Zhang Y, Lu G H 2009 J. Nucl. Mater. 309 508
[6] Li X C, Shu X L, Liu Y N, Gao F, Lu G H 2011 J. Nucl. Mater. 48 12
[7] Chen L Q 2002 Annu. Rev. Mater. Res. 32 113
[8] Hu S Y, Henager C H, Heinisch H L, Stan M, Baskes M I, Valone S M 2009 J. Nucl. Mater. 392 292
[9] Hu S Y, Henager C H 2009 J. Nucl. Mater. 394 155
[10] Rokkam S, El-Azab A, Millett P, Wolf D 2009 Model Simul. Mater. Sci. Eng. 17 064002
[11] Millett P C, Rokkam S, El-Azab A, Tonks M, Wolf D 2009 Model. Simul. Mater. Sci. Eng. 17 064003
[12] Stan M, Ramirez J C, Cristea P, Hu S Y, Deo C, Uberuaga B P, Srivilliputhur S, Rudin S P, Wills J M 2007 J. Allo. Comput. 444-445 415
[13] Golubov S I, Stoller R E, Zinkle S J, Ovcharenko A M 2007J. Nucl. Mater. 361 149
[14] Kmetyk L N, Sommer W F, Weertman J 1981 J. Nucl. Mater. 103-104 1409
[15] Chen L Q, Shen J 1998 Comput. Phys. Commu. 108 147
[16] Ono K, Arakawa K, Hojou K 2002 J. Nucl. Mater. 307 1507
[17] Brass A M, Chanfreau A, Chene J 1994 Metall. Etallu. Mater. Trans. A 25A 2117
[18] Zhao F, Qiao J S, Huang Y, Wan F R, Ohnuki S 2008 Mater. Character. 59 344
[19] Krill C E, Chen L Q 2002 Acta Mater. 50 3957
[20] Dudarev S L, Semenov A A, Woo C H 2003 Phy. Rev. B 67 094103
[21] Vaidya W V 1983 J. Nucl. Mater. 113 219
Catalog
Metrics
- Abstract views: 6936
- PDF Downloads: 550
- Cited By: 0