Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect on the electronic structures and optical bandgaps of Ga-doped wurtzite TM0.125Zn0.875O(TM=Be, Mg)

Zheng Shu-Wen Fan Guang-Han Zhang Tao Pi Hui Xu Kai-Fang

Citation:

Effect on the electronic structures and optical bandgaps of Ga-doped wurtzite TM0.125Zn0.875O(TM=Be, Mg)

Zheng Shu-Wen, Fan Guang-Han, Zhang Tao, Pi Hui, Xu Kai-Fang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The optimized structure parameters, electron density of states, energy band structures and optical bandgaps of the TM0.125Zn0.875O (TM=Be, Mg) alloys and Ga-doped TM0.125Zn0.875O are calculated and analyzed by using the ultra-soft pseudopotential approach of the plane-wave based upon density functional theory. The theoretical results show the Ga-doped TM0.125Zn0.875O materials are easily obtained and their structures are more stable. The Ga-doped TM0.125Zn0.875O are good n-type materials and their energy bandgaps are determined by Ga 4s states of the conduction band minimum and O 2p states of the valence band maximum. Compared with the TM0.125Zn0.875O alloys, the optical bandgaps of Ga-doped TM0.125Zn0.875O become wider due to the Burstein-Moss shift and many-body effects, which is consistent with previous experimental data. The Ga-doped TM0.125Zn0.875O materials are suitable as TCO films for the UV and deep UV optoelectronic device.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61176043), the Special Funds for Provincial Strategic and Emerging Industries Projects of Guangdong, China (Grant No. 2012A080304016), and the Youth Foundation of South China Normal University, China (Grant No. 2012KJ018).
    [1]

    Service R F 1997 Science 276 5314

    [2]
    [3]

    Decremps F, Datchi F, Saitta A M, Polian A 2003 Phys. Rev. B 68 104101

    [4]
    [5]

    Aoki T, Hatanaka Y, Look D C 2000 Appl. Phys. Lett. 76 3257

    [6]
    [7]

    Asmar R A, Ferblantier G, Mailly F, Gall-Borrut P, Foucaran A 2005 Thin Solid Films 473 49

    [8]

    Kim G, Bang J, Kim Y, Rout S K, Woo S I 2009 Appl. Phys. A 97 21

    [9]
    [10]

    Yang W, Liu Z, Peng D L, Zhang F, Huang H, Xie Y, Wu Z 2009 Appl. Surf. Sci. 255 5669

    [11]
    [12]
    [13]

    Wu F, Fang L, Pan Y J, Zhou K, Ruan H B, Liu G B, Kong C Y 2011 Thin Solid Films 520 703

    [14]
    [15]

    Huang Y H, Zhang Y, Gu Y S, Bai X D, Qi J J, Liao Q L, Liu J 2007 J. Phys. Chem. C 111 9039

    [16]
    [17]

    Khranovskyy V, Grossner U, Lazorenko V, Lashkarev G, Svensson B G, Yakimova R 2006 Superlattices Microstruct 39 275

    [18]
    [19]

    Li Z Z, Chen Z Z, Huang W, Chang S H, Ma X M, 2011 Appl. Surf. Sci. 57 8486

    [20]
    [21]

    Hsueh K P, Tun C J, Chiu H C, Huang Y P, Chi G C 2010 J. Vac. Sci. Technol. B 28 720

    [22]
    [23]

    Zhang L Q, Ye Z Z, Huang J Y, Lu B, He H P, Lu J G, Zhang Y Z, Jiang J, Zhang J, Wu K W, Zhang W G 2011 J. Alloys Compd. 509 7405

    [24]
    [25]

    Bhattacharya P, Das R R, Katiyar R S 2004 Thin Solid Films 447 564

    [26]

    Yang C, Li X M, Gao X D, Cao X, Yang R, Li Y Z 2011 Solid State Commun. 151 264

    [27]
    [28]
    [29]

    Liu W S, Chen W K, Hsueh K P 2013 J. Alloys Compd. 552 255

    [30]
    [31]

    Ryu Y R, Lee T S, Lubguban J A, Corman A B, White H W, Leem J H, Han M S, Park YS, Youn C J, Kim J W 2006 Appl. Phys. Lett. 88 052103

    [32]

    Ryu Y R, Lubguban J A, Lee T S, White H W, Jeong T S, Youn C J, Kim B J 2007 Appl. Phys. Lett. 90 131115

    [33]
    [34]

    Xu X G, Zhang D L, Wu Y, Zhang X, Li X Q, Yang H L, Jiang Y 2012 Rare Metals 31 107

    [35]
    [36]

    Zhang D L, Xu X G, Wang W, Zhang X, Yang H L, Wu Y, Ma C, Jiang Y 2012 Rare Metals 31 112

    [37]
    [38]
    [39]

    Lou J Y, Jiang X S, Xu T J, Liang D L, Jiao F J, Gao L 2012 Rare Metals 31 507

    [40]
    [41]

    Kim W J, Leem T H, Han M S, Park I M, Ryu Y R, Lee T S 2006 J. Appl. Phys. 99 096104

    [42]

    Huang H C, Gilmer G H, de la Tomas D R 1998 J. Appl. Phys. 84 3636

    [43]
    [44]

    Segall M D, Lindan P J D, Probert M 2002 J. Phys. Cond. Matt. 14 2717

    [45]
    [46]

    Perdew J, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [47]
    [48]
    [49]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [50]
    [51]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [52]
    [53]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768

    [54]
    [55]

    Schleife A, Fuchs F, Furthmuller J, Bechstedt F 2006 Phys. Rev. B 73 245212

    [56]
    [57]

    Tang X, L H F, Ma C Y, Zhao J J, Zhang Q Y 2008 Acta Phys. Sin. 57 1066 (in Chinese) [唐鑫, 吕海峰, 马春雨, 赵纪军, 张庆瑜 2008 物理学报 57 1066]

    [58]

    Su X Y, Si P P, Hou Q Y, Kong X L, Cheng W 2009 Phys. B: Condens. Matter 404 1794

    [59]
    [60]

    Yang K S, Dai Y, Huang B B 2008 Chem. Phys. Lett. 456 71

    [61]
    [62]

    Zhang Y, Shao X H, Wang C Q 2010 Acta Phys. Sin. 59 5652 (in Chinese) [张云, 邵晓红, 王治强 2010 物理学报 59 5652]

    [63]
    [64]

    Yoo Y Z, Jin Z W, Chikyow T, Fukumura T, Kawasaki M, Koinuma H 2002 Appl. Phys. Lett. 81 3798

    [65]
    [66]
    [67]

    Wang A J, Li S C, Wang L Y, Liu Z 2009 Chin. Phys. B 18 1674

    [68]

    Lu J G, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T 2006 Appl. Phys. Lett. 89 262107

    [69]
    [70]

    Franz C, Giar M, Heinemann M, Czerner M, Heiliger C 2012 MRS Proceedings 1494 2013

    [71]
    [72]

    Shi L B, Li R B, Cheng S, Li M B 2009 Acta Phys. Sin. 58 6446 (in Chinese) [史力斌, 李容兵, 成爽, 李明标 2009 物理学报 58 6446]

    [73]
    [74]

    Jin X L, Lou S Y, Kong D G, Li Y C, Du Z L 2006 Acta Phys. Sin. 55 4809 (in Chinese) [靳锡联, 娄世云, 孔德国, 李蕴才, 杜祖亮 2006 物理学报 55 4809]

    [75]
    [76]

    Liu E K, Zhu B S, Luo J S 2003 Semiconductor Physics(Beijing: Publishing House of Electronics Industry) p111, 129 (in Chinese) [刘恩科, 朱秉升, 罗晋生 2003 半导体物理学 (北京: 电子工业出版社) 第111, 129页]

    [77]
    [78]

    Mott N F 1961 Philos. Mag. 6 287

    [79]
    [80]

    Han T, Meng F Y, Zhang S, Cheng X M, Oh J I 2011 J. Appl. Phys. 110 063724

    [81]
    [82]
    [83]

    Burstein E 1954 Phys. Rev. 93 632

    [84]

    Moss T S 1954 Proc. Phys. Soc. London Sect. B 67 775

    [85]
  • [1]

    Service R F 1997 Science 276 5314

    [2]
    [3]

    Decremps F, Datchi F, Saitta A M, Polian A 2003 Phys. Rev. B 68 104101

    [4]
    [5]

    Aoki T, Hatanaka Y, Look D C 2000 Appl. Phys. Lett. 76 3257

    [6]
    [7]

    Asmar R A, Ferblantier G, Mailly F, Gall-Borrut P, Foucaran A 2005 Thin Solid Films 473 49

    [8]

    Kim G, Bang J, Kim Y, Rout S K, Woo S I 2009 Appl. Phys. A 97 21

    [9]
    [10]

    Yang W, Liu Z, Peng D L, Zhang F, Huang H, Xie Y, Wu Z 2009 Appl. Surf. Sci. 255 5669

    [11]
    [12]
    [13]

    Wu F, Fang L, Pan Y J, Zhou K, Ruan H B, Liu G B, Kong C Y 2011 Thin Solid Films 520 703

    [14]
    [15]

    Huang Y H, Zhang Y, Gu Y S, Bai X D, Qi J J, Liao Q L, Liu J 2007 J. Phys. Chem. C 111 9039

    [16]
    [17]

    Khranovskyy V, Grossner U, Lazorenko V, Lashkarev G, Svensson B G, Yakimova R 2006 Superlattices Microstruct 39 275

    [18]
    [19]

    Li Z Z, Chen Z Z, Huang W, Chang S H, Ma X M, 2011 Appl. Surf. Sci. 57 8486

    [20]
    [21]

    Hsueh K P, Tun C J, Chiu H C, Huang Y P, Chi G C 2010 J. Vac. Sci. Technol. B 28 720

    [22]
    [23]

    Zhang L Q, Ye Z Z, Huang J Y, Lu B, He H P, Lu J G, Zhang Y Z, Jiang J, Zhang J, Wu K W, Zhang W G 2011 J. Alloys Compd. 509 7405

    [24]
    [25]

    Bhattacharya P, Das R R, Katiyar R S 2004 Thin Solid Films 447 564

    [26]

    Yang C, Li X M, Gao X D, Cao X, Yang R, Li Y Z 2011 Solid State Commun. 151 264

    [27]
    [28]
    [29]

    Liu W S, Chen W K, Hsueh K P 2013 J. Alloys Compd. 552 255

    [30]
    [31]

    Ryu Y R, Lee T S, Lubguban J A, Corman A B, White H W, Leem J H, Han M S, Park YS, Youn C J, Kim J W 2006 Appl. Phys. Lett. 88 052103

    [32]

    Ryu Y R, Lubguban J A, Lee T S, White H W, Jeong T S, Youn C J, Kim B J 2007 Appl. Phys. Lett. 90 131115

    [33]
    [34]

    Xu X G, Zhang D L, Wu Y, Zhang X, Li X Q, Yang H L, Jiang Y 2012 Rare Metals 31 107

    [35]
    [36]

    Zhang D L, Xu X G, Wang W, Zhang X, Yang H L, Wu Y, Ma C, Jiang Y 2012 Rare Metals 31 112

    [37]
    [38]
    [39]

    Lou J Y, Jiang X S, Xu T J, Liang D L, Jiao F J, Gao L 2012 Rare Metals 31 507

    [40]
    [41]

    Kim W J, Leem T H, Han M S, Park I M, Ryu Y R, Lee T S 2006 J. Appl. Phys. 99 096104

    [42]

    Huang H C, Gilmer G H, de la Tomas D R 1998 J. Appl. Phys. 84 3636

    [43]
    [44]

    Segall M D, Lindan P J D, Probert M 2002 J. Phys. Cond. Matt. 14 2717

    [45]
    [46]

    Perdew J, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [47]
    [48]
    [49]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [50]
    [51]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [52]
    [53]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768

    [54]
    [55]

    Schleife A, Fuchs F, Furthmuller J, Bechstedt F 2006 Phys. Rev. B 73 245212

    [56]
    [57]

    Tang X, L H F, Ma C Y, Zhao J J, Zhang Q Y 2008 Acta Phys. Sin. 57 1066 (in Chinese) [唐鑫, 吕海峰, 马春雨, 赵纪军, 张庆瑜 2008 物理学报 57 1066]

    [58]

    Su X Y, Si P P, Hou Q Y, Kong X L, Cheng W 2009 Phys. B: Condens. Matter 404 1794

    [59]
    [60]

    Yang K S, Dai Y, Huang B B 2008 Chem. Phys. Lett. 456 71

    [61]
    [62]

    Zhang Y, Shao X H, Wang C Q 2010 Acta Phys. Sin. 59 5652 (in Chinese) [张云, 邵晓红, 王治强 2010 物理学报 59 5652]

    [63]
    [64]

    Yoo Y Z, Jin Z W, Chikyow T, Fukumura T, Kawasaki M, Koinuma H 2002 Appl. Phys. Lett. 81 3798

    [65]
    [66]
    [67]

    Wang A J, Li S C, Wang L Y, Liu Z 2009 Chin. Phys. B 18 1674

    [68]

    Lu J G, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T 2006 Appl. Phys. Lett. 89 262107

    [69]
    [70]

    Franz C, Giar M, Heinemann M, Czerner M, Heiliger C 2012 MRS Proceedings 1494 2013

    [71]
    [72]

    Shi L B, Li R B, Cheng S, Li M B 2009 Acta Phys. Sin. 58 6446 (in Chinese) [史力斌, 李容兵, 成爽, 李明标 2009 物理学报 58 6446]

    [73]
    [74]

    Jin X L, Lou S Y, Kong D G, Li Y C, Du Z L 2006 Acta Phys. Sin. 55 4809 (in Chinese) [靳锡联, 娄世云, 孔德国, 李蕴才, 杜祖亮 2006 物理学报 55 4809]

    [75]
    [76]

    Liu E K, Zhu B S, Luo J S 2003 Semiconductor Physics(Beijing: Publishing House of Electronics Industry) p111, 129 (in Chinese) [刘恩科, 朱秉升, 罗晋生 2003 半导体物理学 (北京: 电子工业出版社) 第111, 129页]

    [77]
    [78]

    Mott N F 1961 Philos. Mag. 6 287

    [79]
    [80]

    Han T, Meng F Y, Zhang S, Cheng X M, Oh J I 2011 J. Appl. Phys. 110 063724

    [81]
    [82]
    [83]

    Burstein E 1954 Phys. Rev. 93 632

    [84]

    Moss T S 1954 Proc. Phys. Soc. London Sect. B 67 775

    [85]
  • [1] Dong Xiao. Density functional theory on reaction mechanism between p-doped LiNH2 clusters and LiH and a new hydrogen storage and desorption mechanism. Acta Physica Sinica, 2023, 72(15): 153101. doi: 10.7498/aps.72.20230374
    [2] Luo Qiang, Yang Heng, Guo Ping, Zhao Jian-Fei. Density functional theory calculation of structure and electronic properties in N-methane hydrate. Acta Physica Sinica, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [3] Du Jian-Bin, Zhang Qian, Li Qi-Feng, Tang Yan-Lin. Investigation of external electric field effect on C24H38O4 molecule by density functional theory. Acta Physica Sinica, 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [4] Zhou Xiao-Hong, Yang Qing, Zou Jun-Tao, Liang Shu-Hua. Effects of growth conditions on the microstructures and photoluminescence properties of Ga-doped ZnO films. Acta Physica Sinica, 2015, 64(8): 087803. doi: 10.7498/aps.64.087803
    [5] Yang Zhen-Qing, Bai Xiao-Hui, Shao Chang-Jin. Density functional theory studies of (TiO2)12 quantum ring and its electronic properties when doped with transition metal compounds. Acta Physica Sinica, 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [6] Dai Guang-Zhen, Jiang Xian-Wei, Xu Tai-Long, Liu Qi, Chen Jun-Ning, Dai Yue-Hua. Effect of oxygen vacancy on lattice and electronic properties of HfO2 by means of density function theory study. Acta Physica Sinica, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [7] Zheng Shu-Wen, Fan Guang-Han, He Miao, Zhao Ling-Zhi. Theoretical study of the effect of W-doping on the conductivity of β-Ga2O3. Acta Physica Sinica, 2014, 63(5): 057102. doi: 10.7498/aps.63.057102
    [8] Lü Jin, Yang Li-Jun, Wang Yan-Fang, Ma Wen-Jin. Density functional theory study of structure characteristics and stabilities of Al2Sn(n=2-10) clusters. Acta Physica Sinica, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [9] Yu Ben-Hai, Chen Dong. Phase transition, electronic and optical properties of Si3N4 new phases at high pressure with density functional theory. Acta Physica Sinica, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [10] Xu Ying-Ying, Kan Yu-He, Wu Jie, Tao Wei, Su Zhong-Min. Theoretical study on the electronic structures and photophysical properties of carbon nanorings and their analogues. Acta Physica Sinica, 2013, 62(8): 083101. doi: 10.7498/aps.62.083101
    [11] Shen Qing-He, Gao Zhi-Wei, Ding Huai-Yi, Zhang Guang-Hui, Pan Nan, Wang Xiao-Ping. Suppression of visible light emission of ZnO nanostructures by Ga-doping. Acta Physica Sinica, 2012, 61(16): 167105. doi: 10.7498/aps.61.167105
    [12] Xie Xiao-Dong, Hao Yu-Ying, Zhang Ri-Guang, Wang Bao-Jun. Lithium-doped tris (8-hydroxyquinoline) aluminum studied by density functional theory. Acta Physica Sinica, 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [13] Gao Tao, Zhou Jing-Jing, Chen Yun-Gui, Wu Chao-Ling, Xiao Yan. Spatial configurations and X-ray absorption of Ti catalyzing on NaAlH4 surfaces: Car-Parrinello molecular dynamics and density functional theory study. Acta Physica Sinica, 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [14] Jin Rong, Chen Xiao-Hong. Structure and properties of ZrnPd clusters by density-functional theory. Acta Physica Sinica, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [15] Liu Jian-Jun. The effect on electronic density of states and optical properties of ZnO by doping Ga. Acta Physica Sinica, 2010, 59(9): 6466-6472. doi: 10.7498/aps.59.6466
    [16] Lin Feng, Zheng Fa-Wei, Ouyang Fang-Ping. A density functional theory study on water adsorption on TiO2-terminated SrTiO3(001) surface. Acta Physica Sinica, 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [17] Li Xi-Bo, Luo Jiang-Shan, Guo Yun-Dong, Wu Wei-Dong, Wang Hong-Yan, Tang Yong-Jian. Density functional theory study of the stability, electronic and magnetic properties of Scn, Yn and Lan (n=2—10) clusters. Acta Physica Sinica, 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [18] Chen Yu-Hong, Kang Long, Zhang Cai-Rong, Luo Yong-Chun, Ma Jun. Density functional theory study of [Mg(NH2)2]n(n=1—5) clusters. Acta Physica Sinica, 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [19] Zeng Zhen-Hua, Deng Hui-Qiu, Li Wei-Xue, Hu Wang-Yu. Density function theory calculation of oxygen adsorption on Au(111) surface. Acta Physica Sinica, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [20] Tan Ming-Qiu, Tao Xiang-Ming, Xu Xiao-Jun, Cai Jian-Qiu. Density functional theory study on the electronic structure of UAl3 a nd USn3. Acta Physica Sinica, 2003, 52(12): 3142-3149. doi: 10.7498/aps.52.3142
Metrics
  • Abstract views:  6223
  • PDF Downloads:  430
  • Cited By: 0
Publishing process
  • Received Date:  27 November 2013
  • Accepted Date:  14 January 2014
  • Published Online:  05 April 2014

/

返回文章
返回